Nuclear Issues

15 Items

President Joe Biden meets virtually with Chinese President Xi Jinping from the Roosevelt Room of the White House in Washington, Monday, Nov. 15, 2021.

AP Photo/Susan Walsh

- Belfer Center for Science and International Affairs, Harvard Kennedy School

The U.S.-China Future: Competition and Collaboration With a Rising China

| Fall 2021

Whether they regard it as competitive, cooperative, or confrontational, virtually all observers agree that the U.S.-China relationship is consequential. From cyber norms and AI to military tensions in the Taiwan Strait and the global struggle to turn the tide on climate change, how Washington and Beijing manage their shared future will shape the globe for decades to come. Through research and relationship-building, the Center is dedicated to helping the U.S. and China collaborate and compete without conflict.

teaser image

Paper

The History of Highly Enriched Uranium Production in China

| July 2017

China initiated its nuclear weapon program in 1955 and began to construct its fissile-material production facilities in the late 1950s. China has produced highly enriched uranium (HEU) for weapons at two complexes: Lanzhou gaseous diffusion plant (GDP, also referred as Plant 504) and Heping GDP (the Jinkouhe facility of Plant 814).

In 1958, China started the construction of the Lanzhou plant with advice from Soviet experts. Moscow withdrew all its experts in August 1960, however, forcing China to become self-reliant. On January 14, 1964, the GDP began to produce 90% enriched uranium, which made possible China’s first nuclear test on 16 October 1964.

teaser image

Paper

The History of Plutonium Production in China

| July 2017

China has produced plutonium for weapons at two sites: 1) Jiuquan Atomic Energy Complex (Plant 404) in Jiuquan, Gansu province. This site includes China’s first plutonium reactor (reactor 801) and associated reprocessing facilities. 2) Guangyuan plutonium production complex (Plant 821), located at Guangyuan in Sichuan province. This “third line” site also included a plutonium reactor (reactor 821) and reprocessing facility. While China has not declared officially that it has ended HEU and plutonium production for weapons, it appears that China halted its HEU and plutonium production for weapons in 1987.1

Report - Managing the Atom Project, Belfer Center

The Cost of Reprocessing in China

| January 2016

Faced with the twin pressures of a still-quickly growing economy and unprecedented smog from coal-fired plants, China is racing to expand its fleet of nuclear power plants. As it does so, Beijing is considering making large capital investments in facilities to reprocess spent nuclear fuel and recycle the resulting plutonium in fast neutron reactors that breed more plutonium. This report outlines the enormous costs China would likely face if it decides to build large-scale plants for reprocessing plutonium from spent nuclear fuel and recycling the plutonium in fast neutron reactors.

Report - Managing the Atom Project, Belfer Center

China's Uranium Enrichment Capacity: Rapid Expansion to Meet Commercial Needs

| August 20, 2015

Based on satellite imagery, Chinese publications, and discussions with Chinese experts, This report suggests that China has much more civilian enrichment capacity than previously thought, and even more is on the way. If these new estimates are correct, China has enough enrichment capacity to meet its nuclear power fuel requirements for the coming decade and beyond. Further, China will have excess enrichment capacity and will likely become a net exporter of commercial enrichment services.

- Belfer Center for Science and International Affairs, Harvard Kennedy School

Belfer Center Spring 2014 Newsletter

| Spring 2014

The Spring 2014 issue of the Belfer Center newsletter features recent and upcoming activities, research, and analysis by members of the Center community on critical global issues. This edition highlights the Belfer Center’s deepening engagement with China and increasing collaboration with Harvard Kennedy School’s Ash Center for Democratic Governance around critical issues related to China. We announce former Australian Prime Minister Kevin Rudd as a new Belfer Center senior fellow who will lead efforts to explore possibilities and impacts of a new strategic China-U.S. relationship. Read about this and much more.

Harvard Kennedy School's Tony Saich and Dean David Ellwood at a formal meeting with Li Wei, director of the Development Research Council, and Wang Jingqing, vice minister of the Organization Department of the Peoples Republic of China.

(Laura Ma Photo)

- Belfer Center for Science and International Affairs, Harvard Kennedy School Belfer Center Newsletter

Belfer and Ash Centers Expand U.S.-China Bridge-Building

Spring 2013

Sponsored by the Institute for China-U.S. People-to-People Exchange and by Harvard Kennedy School’s Belfer and Ash Centers, the “Challenge and Cooperation” conference at Peking University in January dissected the implications of China’s new leadership and President Obama’s second term. Participants examined the roles the two countries should play in international security and in trade and investment issues.

- Belfer Center for Science and International Affairs, Harvard Kennedy School Belfer Center Newsletter

From the Director

| Spring 2013

"The strategic partnership between Harvard and China is unique among universities of the world," writes Belfer Center Director Graham Allison, "this relationship is reflected in decades of scholarship in Cambridge, tens of thousands of Chinese graduates of Harvard graduate and executive programs, and the policies of both governments that have brought us to this point."

Report - International Panel on Fissile Materials

The Uncertain Future of Nuclear Energy

    Editor:
  • Frank N. von Hippel
    Authors:
  • Anatoli Diakov
  • Ming Ding
  • Tadahiro Katsuta
  • Charles McCombie
  • M.V. Ramana
  • Tatsujiro Suzuki
  • Susan Voss
  • Suyuan Yu
| September 2010

In the 1970s, nuclear-power boosters expected that by now nuclear power would produce perhaps 80 to 90 percent of all electrical energy globally. Today, the official high-growth projection of the Organization for Economic Co‑operation and Developments (OECD) Nuclear Energy Agency (NEA) estimates that nuclear power plants will generate about 20 percent of all electrical energy in 2050. Thus, nuclear power could make a significant contribution to the global electricity supply. Or it could be phased out — especially if there is another accidental or a terrorist-caused Chernobyl-scale release of radioactivity. If the spread of nuclear energy cannot be decoupled from the spread of nuclear weapons, it should be phased out.

The No.1 and No. 2 reactors at the Tianwan Nuclear Power Plant in Lianyungang city, China, 22 Mar. 2009. The Tianwan power plant is designed to have eight reactors.

AP Photo

Paper

China's Current Spent Fuel Management and Future Management Scenarios

| July 2010

China's recent nuclear energy ambitions have put it in the forefront of research and development in the nuclear industry.This paper will first discuss the status of China's current spent fuel management methods and storage capability. Second, this paper will estimate and calculate the accumulated spent fuel and required spent fuel storage up to 2040 based on three different nuclear development scenarios. Third, future spent fuel management scenarios from now to 2040 are designed and financial costs and proliferation risks are evaluated and discussed associated with each scenario. Last, policy recommendations will be provided for the future spent fuel.