Nuclear Issues

12 Items

Book - Georgetown University Press

India and Nuclear Asia: Forces, Doctrine, and Dangers

| November 2018

India's nuclear profile, doctrine, and practices have evolved rapidly since the country's nuclear breakout in 1998. However, the outside world's understanding of India's doctrinal debates, forward-looking strategy, and technical developments are still two decades behind the present. India and Nuclear Asia will fill that gap in our knowledge by focusing on the post-1998 evolution of Indian nuclear thought, its arsenal, the triangular rivalry with Pakistan and China, and New Delhi's nonproliferation policy approaches. The authors show how India's nuclear trajectory has evolved in response to domestic, regional, and global drivers.

Russian President Vladimir Putin, right, and Iranian President Hassan Rouhani attend a joint news conference

AP

Analysis & Opinions - Atlantic Council

US Pressure is Pushing Iran Closer to Russia and China

| Mar. 22, 2018

"...Iran's turn toward China and Russia leave the United States with less leverage for future negotiations on any issue, making it less and less likely for Iran to agree to cooperate with the United States or its allies. Thus, it is crucial to rethink these policies and come up with a more feasible plan."

teaser image

Analysis & Opinions - Bulletin of the Atomic Scientists

Why China stopped making fissile material for nukes

| Mar. 15, 2018

Some western scholars have expressed growing concern about China’s expansion of its nuclear arsenal and what they see as a “sprint to parity” with the United States. One scholar even claimed that China could have built as many as 3,000 nuclear weapons, far above the estimate of Western intelligence agencies, which assume that China has between 200 and 300. As a comparison, the United States and Russia each keep roughly 7,000 nuclear weapons. If China had any interest in parity, that would leave it with an awfully long way to go.

teaser image

Journal Article - Nonproliferation Review

China’s Nuclear Modernization: Assuring a Second-Strike Capability

| Feb. 11, 2018

Some experts are increasingly concerned that China’s modernization will lead to a Chinese nuclear “breakout”—a pursuit of a nuclear-warfighting capability or a “sprint to parity” with the United States. David Logan (“Hard Constraints on a Chinese Nuclear Breakout,” Vol. 24, Nos. 1–2, 2017, pp. 13–30) rightly suggests that such a nuclear breakout would be constrained not only by China’s “soft” nuclear policy but also by “hard” technical constraints. I would emphasize that it is the former that has been the first principle guiding China’s nuclear-force development. That some of the “hard” technical constrains have resulted from this “soft” guidance demonstrates China’s commitment to a small deterrent force. It is difficult to imagine that the future development of China’s nuclear force would eventually overthrow these first principles. In fact, there is no evidence that China will change its long-standing nuclear policy.

Report - International Panel on Fissile Materials

China’s Fissile Material Production and Stockpile

| January 2018

China began producing highly enriched uranium (HEU) and plutonium for nuclear weapons in the 1960s and is believed to have halted production the 1980s. Despite the passage of thirty years there has been no official policy declaration in this regard. This report uses newly available public information from Chinese sources to provide an improved reconstruction of the history of China’s production of HEU and plutonium for nuclear weapons. This allows improved estimates of the amount of HEU and plutonium China has produced and of its current stockpiles.

teaser image

Analysis & Opinions - The Nautilus Institute

China's Nuclear Spent Fuel Management and Nuclear Security Issues

| Nov. 10, 2017

In this essay, Hui Zhang reviews the status of spent fuel storage in China.  He suggest that China should take steps to improve physical protection, reduce insider threats, promote a nuclear security culture, and improve nuclear cyber security. He also recommends China, South Korea, and Japans’ nuclear security training centers should cooperate and exchange best practices on insider threat reduction, contingency plans for emergency response, and discuss regional cooperation for long-term spent fuel storage, including building a regional center of spent fuel storage.

teaser image

Paper

The History of Highly Enriched Uranium Production in China

| July 2017

China initiated its nuclear weapon program in 1955 and began to construct its fissile-material production facilities in the late 1950s. China has produced highly enriched uranium (HEU) for weapons at two complexes: Lanzhou gaseous diffusion plant (GDP, also referred as Plant 504) and Heping GDP (the Jinkouhe facility of Plant 814).

In 1958, China started the construction of the Lanzhou plant with advice from Soviet experts. Moscow withdrew all its experts in August 1960, however, forcing China to become self-reliant. On January 14, 1964, the GDP began to produce 90% enriched uranium, which made possible China’s first nuclear test on 16 October 1964.

teaser image

Paper

The History of Plutonium Production in China

| July 2017

China has produced plutonium for weapons at two sites: 1) Jiuquan Atomic Energy Complex (Plant 404) in Jiuquan, Gansu province. This site includes China’s first plutonium reactor (reactor 801) and associated reprocessing facilities. 2) Guangyuan plutonium production complex (Plant 821), located at Guangyuan in Sichuan province. This “third line” site also included a plutonium reactor (reactor 821) and reprocessing facility. While China has not declared officially that it has ended HEU and plutonium production for weapons, it appears that China halted its HEU and plutonium production for weapons in 1987.1