Nuclear Issues

67 Items

President Joe Biden meets virtually with Chinese President Xi Jinping from the Roosevelt Room of the White House in Washington, Monday, Nov. 15, 2021.

AP Photo/Susan Walsh

- Belfer Center for Science and International Affairs, Harvard Kennedy School

The U.S.-China Future: Competition and Collaboration With a Rising China

| Fall 2021

Whether they regard it as competitive, cooperative, or confrontational, virtually all observers agree that the U.S.-China relationship is consequential. From cyber norms and AI to military tensions in the Taiwan Strait and the global struggle to turn the tide on climate change, how Washington and Beijing manage their shared future will shape the globe for decades to come. Through research and relationship-building, the Center is dedicated to helping the U.S. and China collaborate and compete without conflict.

Taishan Nuclear Power Plant in Guangdong, China, in 2019.

EDF Energy via Wikimedia Commons

Book Chapter - Cambridge University Press

Enabling a Significant Nuclear Role in China’s Decarbonization

| Dec. 02, 2021

While China is building nuclear reactors faster than any other country in the world, major constraints may limit nuclear energy’s ability to grow to the scale of hundreds of gigawatts that would be required for it to play a major part in decarbonizing China’s energy system. This chapter explores the major constraints on, and risks of, large-scale nuclear energy growth in China, and how both new policies and new technologies might address them. It focuses particularly on the two biggest constraints – economics and siting. Substantial government policies to support nuclear power and advanced reactor systems designed to address some of the key constraints are both likely to be needed for nuclear to have a chance of playing a major role in decarbonizing China’s energy system; nuclear energy’s role may be bigger in the second half of this century than in the first half.

A U.S. Customs and Border Protection officer uses a handheld GR135- Radiation Isttope Identifier to check a container that was stopped after passing through a radiation detection device at the port of Newark in February 2006 (AP Photo/Mel Evans).

AP Photo/Mel Evans

Journal Article - Nonproliferation Review

Combating Nuclear Smuggling? Exploring Drivers and Challenges to Detecting Nuclear and Radiological Materials at Maritime Facilities

| June 03, 2019

International concern over nuclear terrorism has grown during the past few decades. This has driven a broad spectrum of efforts to strengthen nuclear security globally, including the widespread adoption of radiation-detection technology for border monitoring. Detection systems are now deployed at strategic locations for the purported purpose of detecting and deterring the smuggling of nuclear and radioactive materials. However, despite considerable investment in this area, few studies have examined how these programs are implemented or the operational challenges they face on a day-to-day basis. This article seeks to address this with a focus on radiation-detection efforts at maritime facilities. Utilizing practitioner interviews and a survey, this article identifies the factors that influence the planning and use of these systems in this fast-moving environment. The results clearly demonstrate that the implementation of these systems varies significantly across different national and organizational contexts, resulting in a fragmented global nuclear-detection architecture, which arguably undermines efforts to detect trafficked nuclear-threat materials. Greater consideration should therefore be given to developing international standards and guidance, designing and adopting tools to support key parts of the alarm assessment process, and broader sharing of good practice.

How Saudi Arabia and China Could Partner on Solar Energy

AP/Andy Wong

Analysis & Opinions - Axios

How Saudi Arabia and China Could Partner on Solar Energy

| Jan. 24, 2019

Last May, Chinese solar panel manufacturer LONGi signed an agreement with Saudi trading company El Seif Group to establish large-scale solar manufacturing infrastructure in Saudi Arabia. The deal came several months after the Trump administration's imposition of global tariffs on imports of Chinese solar panels and cells.

The Chinese flag displayed at the Russian booth of import fair.

(AP Photo/Ng Han Guan)

Analysis & Opinions - The National Interest

China and Russia: A Strategic Alliance in the Making

| Dec. 14, 2018

THE YEAR before he died in 2017, one of America’s leading twentieth-century strategic thinkers, Zbigniew Brzezinski, sounded an alarm. In analyzing threats to American security, “the most dangerous scenario,” he warned, would be “a grand coalition of China and Russia…united not by ideology but by complementary grievances.” This coalition “would be reminiscent in scale and scope of the challenge once posed by the Sino-Soviet bloc, though this time China would likely be the leader and Russia the follower.”

teaser image

Analysis & Opinions - The Nautilus Institute

China's Nuclear Spent Fuel Management and Nuclear Security Issues

| Nov. 10, 2017

In this essay, Hui Zhang reviews the status of spent fuel storage in China.  He suggest that China should take steps to improve physical protection, reduce insider threats, promote a nuclear security culture, and improve nuclear cyber security. He also recommends China, South Korea, and Japans’ nuclear security training centers should cooperate and exchange best practices on insider threat reduction, contingency plans for emergency response, and discuss regional cooperation for long-term spent fuel storage, including building a regional center of spent fuel storage.

teaser image

Paper

The History of Highly Enriched Uranium Production in China

| July 2017

China initiated its nuclear weapon program in 1955 and began to construct its fissile-material production facilities in the late 1950s. China has produced highly enriched uranium (HEU) for weapons at two complexes: Lanzhou gaseous diffusion plant (GDP, also referred as Plant 504) and Heping GDP (the Jinkouhe facility of Plant 814).

In 1958, China started the construction of the Lanzhou plant with advice from Soviet experts. Moscow withdrew all its experts in August 1960, however, forcing China to become self-reliant. On January 14, 1964, the GDP began to produce 90% enriched uranium, which made possible China’s first nuclear test on 16 October 1964.

teaser image

Paper

The History of Plutonium Production in China

| July 2017

China has produced plutonium for weapons at two sites: 1) Jiuquan Atomic Energy Complex (Plant 404) in Jiuquan, Gansu province. This site includes China’s first plutonium reactor (reactor 801) and associated reprocessing facilities. 2) Guangyuan plutonium production complex (Plant 821), located at Guangyuan in Sichuan province. This “third line” site also included a plutonium reactor (reactor 821) and reprocessing facility. While China has not declared officially that it has ended HEU and plutonium production for weapons, it appears that China halted its HEU and plutonium production for weapons in 1987.1

A rural stove using biomass cakes, fuelwood and trash as cooking fuel... It is a major source of air pollution in India, and produces smoke and numerous indoor air pollutants at concentrations 5 times higher than coal.

Wikipedia

Journal Article - Nature Energy

Energy decisions reframed as justice and ethical concerns

| 6 May 2016

Many energy consumers, and even analysts and policymakers, confront and frame energy and climate risks in a moral vacuum, rarely incorporating broader social justice concerns. Here, to remedy this gap, we investigate how concepts from justice and ethics can inform energy decision-making by reframing five energy problems — nuclear waste, involuntary resettlement, energy pollution, energy poverty and climate change — as pressing justice concerns.