80 Items

A man prepares to charge his electric-powered vehicle parked at a shopping mall in Beijing, Monday, Sept. 11, 2017.

AP Photo/Andy Wong

Paper - Environment and Natural Resources Program, Belfer Center

The Role of Electric Vehicles in Decarbonizing China’s Transportation Sector

| April 2019

This paper focuses on the deep decarbonization of the transportation sector. The first part of the paper provides an assessment of China’s efforts to stimulate the rapid deployment of electric vehicles. The second part analyzes the CO2 equivalent reductions from a 20% electric vehicle deployment scenario. It concludes that under most assumptions, emissions will be reduced, but the total reduction will be less than many people believe due to the carbon intensity of battery manufacturing.

Stan Osserman, director of the Hawaii Center for Advanced Transportation Technologies, speaks in front of a new waste to energy facility at Joint Base Pearl Harbor-Hickam, Hawaii.

AP/Audrey McAvoy

Journal Article - Journal of Cleaner Production

Stochastic Cost-benefit Analysis of Urban Waste-to-Energy Systems

Municipal solid waste generation is a rapidly increasing challenge that is leading to severe pollution and environmental degradation in many urban areas of developing countries. This study presents the Waste to Energy Recovery Assessment (WERA) framework, a new quantitative decision support model for initial evaluation and alternative comparisons of different thermochemical treatments of municipal wastes. The framework is used to study waste-to-energy (WtE) systems for Abu Dhabi, Riyadh, Tokyo, and New York. The results show that WtE systems can fulfill only 1.4–3.6% of 2014 electricity demand in the analyzed cases.

Charging electric Vehicle

Flickr/Sino-German Urbanization Partnership

Journal Article - Elsevier Inc.

Electric Vehicle Recycling in China: Economic and Environmental Benefits

    Authors:
  • Fuquan Zhao
  • Zongwei Liu
  • Han Hao
| January 2019

With the rapid growth of electric vehicles in China, their benefits should be scientifically identified to support the industry development. Although the life cycle benefits of electric vehicles have been analyzed worldwide, the recycling phase has not been fully studied yet, especially in China. Therefore, this study focuses on the economic and environmental benefits of electric vehicle recycling in China. Based on the technology adopted by leading enterprises, the gross income and reduction of energy consumption and greenhouse gas emissions are calculated to reveal the benefits.

A satellite view of the Gansu Dunhuang Solar Park, a photovoltaic power station under construction in Gansu Provence, as seen on June 9, 2018.

DigitalGlobe, CNES/Airbus, Google Earth, used with permission

Report - Environment and Natural Resources Program, Belfer Center

Harvard-Tsinghua Workshop on Low-Carbon Development and Public Policy

| September 2018

The Belfer Center’s Environment and Natural Resources Program and the Center for Science, Technology, and Education Policy at Tsinghua University held the fifth annual Tsinghua-Harvard Workshop on Low-Carbon Development and Public Policy. This event brought together leading experts on climate and energy from academic, business, and government communities in both the United States and China. This year’s workshop focused on electricity systems and renewable energy penetration.

solar panels are seen near the power grid in northwestern China

AP/Ng Han Guan, File

Journal Article - Environmental Research Letters

Climate, Air Quality and Human Health Benefits of Various Solar Photovoltaic Deployment Scenarios in China in 2030

    Authors:
  • Junnan Yang
  • Xiaoyuan Li
  • Fabian Wagner
  • Denise L. Mauzerall
| 2018

Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, the authors estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios.

A woman wears a face mask as she looks at her smartphone while walking along a street in Beijing

AP

Journal Article - Applied Energy

Potential Co-benefits of Electrification for Air Quality, Health, and CO2 Mitigation in 2030 China

    Authors:
  • Junnan Yang
  • Xi Lu
  • Denise L. Mauzerall
| May 15, 2018

Electrification with decarbonized electricity is a central strategy for carbon mitigation. End-use electrification can also reduce air pollutant emissions from the demand sectors, which brings public health co-benefits. In this article, the authors focus on electrification strategies for China, a country committed to both reducing air pollution and peaking carbon emissions before 2030. Considering both coal-intensive and decarbonized power system scenarios for 2030, they assess the air quality, health, and climate co-benefits of various end-use electrification scenarios for the vehicle and residential sectors relative to a non-electrified coal-intensive business-as-usual scenario.

Report

Foundations of Decarbonization in China: A Post-2030 Perspective

| July 2017

The Harvard-Tsinghua Workshop on Low-Carbon Development and Public Policy is the fourth annual joint workshop between the Harvard Kennedy School’s Environment and Natural Resources Program and the Center for Science, Technology, and Education Policy at Tsinghua University. The workshop convened leading experts on climate and energy from the United States and China at Tsinghua University in Beijing, China, on June 1-2, 2017.

The workshop was divided into five sessions. The first two sessions focused on the scope of the climate problem and the options for addressing it. The following three sessions explored specific options: renewable energy, nuclear power, and air pollution regulation.

Shanghai

Creative Commons

Journal Article - Environmental Research Letters

Air Quality and Climate Benefits of Long-distance Electricity Transmission in China

    Authors:
  • Jiahai Yuan
  • Yu Zhao
  • Meiyun Lin
  • Qiang Zhang
  • David G. Victor
  • Denise L. Mauzerall
| 2017

China is the world's top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. The authors examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. 

Earth at night, 2012. People around the world depend upon electric lighting. Generating electricity using increased amounts of non-fossil fuels is critical to slowing climate change.

USA.gov

Journal Article - Ecological Economics

Using Inclusive Wealth for Policy Evaluation: Application to Electricity Infrastructure Planning in Oil-Exporting Countries

| 2017

Decision-makers often seek to design policies that support sustainable development. Prospective evaluations of how effectively such policies are likely to meet sustainability goals have nonetheless remained relatively challenging. Evaluating policies against sustainability goals can be facilitated through the inclusive wealth framework, which characterizes development in terms of the value to society of its underlying capital assets, and defines development to be potentially sustainable if that value does not decline over time.