28 Items

A member of the Czech Army takes part in an anti-terrorism drill at the Temelin nuclear power plant near the town of Tyn nad Vltavou, Czech Republic, April 11, 2017.

REUTERS/David W. Cerny

Report - Belfer Center for Science and International Affairs, Harvard Kennedy School

Revitalizing Nuclear Security in an Era of Uncertainty

| January 2019

Nuclear security around the world has improved dramatically over the last three decades—which demonstrates that with focused leadership, major progress is possible. But important weaknesses remain, and the evolution of the threat remains unpredictable. The danger that terrorists could get and use a nuclear bomb, or sabotage a major nuclear facility, or spread dangerous radioactive material in a “dirty bomb,” remains too high. The United States and countries around the world need to join together and provide the leadership and resources needed to put global nuclear security on a sustained path of continuous improvement, in the never-ending search for excellence in performance.

Heads of delegation for 2016 Nuclear Security Summit gather for family photo in Washington, D.C. on April 1, 2016.

Ben Solomon/U.S. Department of State

Analysis & Opinions - The Hill

Rhetoric Aside, the US Commitment to Preventing Nuclear Terrorism is Waning

| Apr. 19, 2018

With the world focused on the United States and North Korea, it’s easy to forget that every president for a quarter-century has said preventing nuclear terrorism was a national security priority. This includes the Trump administration, which identified in its Nuclear Posture Review that nuclear terrorism is one of “the most significant threats to the security of the United States.” It appears, however, despite this strong rhetoric, the administration may not be putting its money where its mouth is.

Hiroshima

U.S. Army

Analysis & Opinions - Bulletin of the Atomic Scientists

The Effects of a Single Terrorist Nuclear Bomb

| Sep. 28, 2017

The escalating threats between North Korea and the United States make it easy to forget the “nuclear nightmare,” as former US Secretary of Defense William J. Perry put it, that could result even from the use of just a single terrorist nuclear bomb in the heart of a major city.

At the risk of repeating the vast literature on the tragedies of Hiroshima and Nagasaki—and the substantial literature surrounding nuclear tests and simulations since then—we attempt to spell out here the likely consequences of the explosion of a single terrorist nuclear bomb on a major city, and its subsequent ripple effects on the rest of the planet. Depending on where and when it was detonated, the blast, fire, initial radiation, and long-term radioactive fallout from such a bomb could leave the heart of a major city a smoldering radioactive ruin, killing tens or hundreds of thousands of people and wounding hundreds of thousands more. Vast areas would have to be evacuated and might be uninhabitable for years. Economic, political, and social aftershocks would ripple throughout the world. A single terrorist nuclear bomb would change history. The country attacked—and the world—would never be the same.

Discussion Paper - Energy Technology Innovation Policy Project, Belfer Center

Energy Technology Expert Elicitations for Policy: Workshops, Modeling, and Meta-analysis

| October 2014

Characterizing the future performance of energy technologies can improve the development of energy policies that have net benefits under a broad set of future conditions. In particular, decisions about public investments in research, development, and demonstration (RD&D) that promote technological change can benefit from (1) an explicit consideration of the uncertainty inherent in the innovation process and (2) a systematic evaluation of the tradeoffs in investment allocations across different technologies. To shed light on these questions, over the past five years several groups in the United States and Europe have conducted expert elicitations and modeled the resulting societal benefits. In this paper, the authors discuss the lessons learned from the design and implementation of these initiatives.

Journal Article - Environmental Research Letters

The Future Costs of Nuclear Power Using Multiple Expert Elicitations: Effects of RD&D and Elicitation Design

| July-September 2013

Characterization of the anticipated performance of energy technologies to inform policy decisions increasingly relies on expert elicitation. Knowledge about how elicitation design factors impact the probabilistic estimates emerging from these studies is, however, scarce. We focus on nuclear power, a large-scale low-carbon power option, for which future cost estimates are important for the design of energy policies and climate change mitigation efforts. We use data from three elicitations in the USA and in Europe and assess the role of government research, development, and demonstration (RD&D) investments on expected nuclear costs in 2030.

Nuclear Fuel Rod Assembly

NEAMS/DOE Photo

Journal Article - Environmental Science and Technology

Expert Judgments about RD&D and the Future of Nuclear Energy

| 2012

Probabilistic estimates of the cost and performance of future nuclear energy systems under different scenarios of government research, development, and demonstration (RD&D) spending were obtained from 30 U.S. and 30 European nuclear technology experts. The majority expected that such RD&D would have only a modest effect on cost, but would improve performance in other areas, such as safety, waste management, and uranium resource utilization. The U.S. and E.U. experts were in relative agreement regarding how government RD&D funds should be allocated, placing particular focus on very high temperature reactors, sodium-cooled fast reactors, fuels and materials, and fuel cycle technologies.

Policy Brief - Energy Technology Innovation Policy Project, Belfer Center

Research, Development, and Demonstration for the Future of Nuclear Energy

| June 2011

Dramatic growth in nuclear energy would be required for nuclear power to provide a significant part of the carbon-free energy the world is likely to need in the 21st century, or a major part in meeting other energy challenges. This would require increased support from governments, utilities, and publics around the world. Achieving that support is likely to require improved economics and major progress toward resolving issues of nuclear safety, proliferation-resistance, and nuclear waste management. This is likely to require both research, development, and demonstration (RD&D) of improved technologies and new policy approaches.

Report

International Workshop on Research, Development, and Demonstration to Enhance the Role of Nuclear Energy in Meeting Climate and Energy Challenges

| April 2011

Dramatic growth in nuclear energy would be required for nuclear power to provide a significant part of the carbon-free energy the world is likely to need in the 21st century, or a major part in meeting other energy challenges. This would require increased support from governments, utilities, and publics around the world. Achieving that support is likely to require improved economics and major progress toward resolving issues of nuclear safety, proliferation-resistance, and nuclear waste management. This is likely to require both research, development, and demonstration (RD&D) of improved technologies and new policy approaches.

- Belfer Center for Science and International Affairs, Harvard Kennedy School Quarterly Journal: International Security

Belfer Center Newsletter Summer 2011

| Summer 2011

The Summer 2011 issue of the Belfer Center newsletter features analysis and advice by Belfer Center scholars regarding the historic upheavals in the Middle East and the disastrous consequences of the earthquake and tsunami in Japan. The Center’s new Geopolitics of Energy project is also highlighted, along with efforts by the Project on Managing the Atom to strengthen nuclear export rules.

President Barack Obama shares the podium with MIT's Susan Hockfield and Paul Holland of Serious Materials during the President's remarks on investments in clean energy and new technology, March 23, 2009, in the Eisenhower Executive Office Building.

White House Photo

Journal Article - Wiley Interdisciplinary Reviews: Climate Change

Trends in Investments in Global Energy Research, Development, and Demonstration

| May/June 2011

Recent national trends in investments in global energy research, development, and demonstration (RD&D) are inconsistent around the world. Public RD&D investments in energy are the metric most commonly used in international comparative assessments of energy-technology innovation, and the metric employed in this article. Overall, the data indicate that International Energy Agency (IEA) member country government investments have been volatile: they peaked in the late 1970s, declined during the subsequent two decades, bottomed out in 1997, and then began to gradually grow again during the 2000s.