41 Items

In 2011, science advisors to the presidents of China and the United States, Wan Gang and John P. Holdren, hold a photo of the historic 1979 U.S.-China agreement on science and engineering.

USDA

- Belfer Center for Science and International Affairs, Harvard Kennedy School Belfer Center Newsletter

Center's Energy Work Wields Impact and Influence Around the World

| Fall/Winter 2016-2017

The Belfer Center began researching energy technology issues in the late 1990s. Its mission was “to determine and promote the adoption of effective strategies for developing and deploying cleaner and more efficient energy technologies that can reduce greenhouse gas emissions, reduce dependence on fossil fuels and stress on water resources, and improve economic development.”

In this issue, we look at the history and influence of the Center’s energy innovation efforts in the past two decades by focusing primarily on ETIP’s work in the U.S. and China.

News - Energy Technology Innovation Policy Project, Belfer Center

DOE Budget Authority for Energy Research, Development, & Demonstration Database

| September 2015

This document contains September 2015 updates to our database on U.S. government investments in energy research, development, demonstration, and deployment (ERD3) through the Department of Energy. The database, in Microsoft Excel format, tracks DOE appropriations from FY 1978–2015 and the 2016 budget request and includes funding for ERD3 from the American Recovery and Reinvestment Act of 2009. It also includes several charts.

Discussion Paper - Energy Technology Innovation Policy Project, Belfer Center

Energy Technology Expert Elicitations for Policy: Workshops, Modeling, and Meta-analysis

| October 2014

Characterizing the future performance of energy technologies can improve the development of energy policies that have net benefits under a broad set of future conditions. In particular, decisions about public investments in research, development, and demonstration (RD&D) that promote technological change can benefit from (1) an explicit consideration of the uncertainty inherent in the innovation process and (2) a systematic evaluation of the tradeoffs in investment allocations across different technologies. To shed light on these questions, over the past five years several groups in the United States and Europe have conducted expert elicitations and modeled the resulting societal benefits. In this paper, the authors discuss the lessons learned from the design and implementation of these initiatives.

A coal mine near Hailar, northeastern Inner Mongolia Autonomous Region, China, 13 August 2005.

Herry Lawford Photo

Analysis & Opinions - The South China Morning Post

China's Coal Addiction a Threat to Its Energy Security

| May 14, 2014

"...[U]ntil now, Beijing's response to unmet energy demand has focused primarily on securing resources overseas, and building infrastructure for imports. China now generates more electricity from imported coal than from nuclear, wind and solar combined. Without a strong, coordinated policy shift, the country will depend on fuel imports for most of its energy consumption by the time it becomes a developed country."

Dong Energy's Nick Brodigan on an offshore wind turbine's base platform, Gunfleet Sands Wind Farm off the coast of Brightlingsea, Essex, Apr. 24, 2009. The Carbon Trust launched a global competition for new designs of offshore wind turbine foundations.

AP Photo

Journal Article - Research Policy

Missions-oriented RD&D Institutions in Energy Between 2000 and 2010: A Comparative Analysis of China, the United Kingdom, and the United States

| December 2012

By analyzing the institutions that have been created to stimulate energy technology innovation in the United States, the United Kingdom, and China—three countries with very different sizes, political systems and cultures, natural resources, and histories of involvement in the energy sector—this article highlights how variations in national objectives and industrial and political environments have translated into variations in policy.

Wind turbines generate electricity at the Qiyueshan Wind Farm in Lichuan city, central China's Hubei province, 7 December 2010.

AP Photo

Journal Article - Energy Economics

The Price of Wind Power in China During its Expansion: Technology Adoption, Learning-by-doing, Economies of Scale, and Manufacturing Localization

| May 2012

Using the bidding prices of participants in China's national wind project concession programs from 2003 to 2007, this paper built up a learning curve model to estimate the joint learning from learning-by-doing and learning-by-searching, with a novel knowledge stock metric based on technology adoption in China through both domestic technology development and international technology transfer. The paper describes, for the first time, the evolution of the price of wind power in China, and provides estimates of how technology adoption, experience building wind farm projects, wind turbine manufacturing localization, and wind farm economies of scale have influenced the price of wind power.

News - Energy Technology Innovation Policy Project, Belfer Center

DOE Budget Authority for Energy Research, Development, & Demonstration Database

| February 29, 2012

This document contains February 2012 updates to our database on U.S. government investments in energy research, development, demonstration, and deployment (ERD3) through the Department of Energy. The database, in Microsoft Excel format, tracks DOE appropriations from FY 1978–2011 and the FY 2012 and 2013 budget requests and includes funding for ERD3 from the American Recovery and Reinvestment Act of 2009. It also includes several charts.

Report - Energy Technology Innovation Policy Project, Belfer Center

Transforming U.S. Energy Innovation

The United States and the world need a revolution in energy technology—a revolution that would improve the performance of our energy systems to face the challenges ahead. In an intensely competitive and interdependent global landscape, and in the face of large climate risks from ongoing U.S. reliance on a fossil-fuel based energy system, it is important to maintain and expand long-term investments in the energy future of the U.S. even at a time of budget stringency. It is equally necessary to think about how to improve the efficiency of those investments, through strengthening U.S. energy innovation institutions, providing expanded incentives for private-sector innovation, and seizing opportunities where international cooperation can accelerate innovation. The private sector role is key: in the United States the vast majority of the energy system is owned by private enterprises, whose innovation and technology deployment decisions drive much of the country's overall energy systems.

teaser image

News - Energy Technology Innovation Policy Project, Belfer Center

Background: Transforming U.S. Energy Innovation Report

The report, Transforming U.S. Energy Innovation, released on Nov. 22, 2011,is the result of a three-year energy research, development, demonstration, and deployment (ERD3) project of the Energy Technology Innovation Policy (ETIP) research group at Harvard Kennedy School's Belfer Center for Science and International Affairs. The ERD3 project was funded by a grant from the Doris Duke Charitable Foundation to produce and promote a comprehensive set of recommendations to help the U.S. administration accelerate the development and deployment of low-carbon energy technologies.