355 Items

orca carbon capture plant

Belfer Center/Elizabeth Hanlon

Paper - Belfer Center for Science and International Affairs, Harvard Kennedy School

Prospects for Direct Air Carbon Capture and Storage: Costs, Scale, and Funding

| Nov. 30, 2023

Al-Juaied and Whitmore examine the costs and prospects for direct air carbon capture and storage (DACCS), and identify types of funding needed for early deployment for DACCS and building momentum for later widespread deployment. The challenges of implementing DACCS at very large scale further emphasize the need for urgent and widespread action to reduce emissions, which should continue to be the main priority for meeting climate goals.

Panelists on stage during hydrogen discussion at Rome Med 2022

Rome MED – Mediterranean Dialogue

News - Belfer Center for Science and International Affairs, Harvard Kennedy School

Is Hydrogen Our Future?

On December 3, 2022, Nicola De Blasio, Senior Fellow with the Belfer Center’s Environment and Natural Resources Program (ENRP), chaired a panel discussion, “Is Hydrogen Our Future?,” at the Rome MED – Mediterranean Dialogue (Rome MED), an annual high-level conference on Mediterranean geopolitics. The panel discussion was part of ENRP’s Future of Hydrogen project’s ongoing engagement with global policymakers, who are increasingly viewing hydrogen as a solution to meeting their decarbonization and energy security goals. 

Policy Brief

Database on U.S. Department of Energy (DOE) Budgets for Energy Research, Development, & Demonstration (1978–2023R)

| Apr. 13, 2022

The attached document contains April 2022 updates to our database on U.S. government investments in energy research, development, demonstration, and deployment (ERD3) through the Department of Energy.

Flag of the European Union against a blue sky

Christian Lue/Unsplash

Report - Belfer Center for Science and International Affairs, Harvard Kennedy School

The Future of Renewable Hydrogen in the European Union: Market and Geopolitical Implications

This paper focuses on the market and geopolitical implications of renewable hydrogen adoption at scale in the European Union (EU). The authors analyze long-term strategies based on three reference scenarios in which the EU prioritizes a different strategic variable: energy independence, cost (optimization), or energy security. Developing competitive and secure hydrogen markets will require close coordination between policy, technology, capital, and society—and for EU countries to unite behind a shared long-term vision.

A hydrogen fuel cell in a workshop

Adobe Stock

Policy Brief

China: The Renewable Hydrogen Superpower?

| May 2021

Renewable hydrogen offers significant advantages for China. It can help Beijing meet its climate and pollution goals—at a time when coal continues to dominate—while avoiding increased reliance on imported fuels. As a readily dispatchable means of storing energy, hydrogen can help to address intermittency and curtailment issues as renewable energy increases its share of China’s energy mix. As a sustainable mobility energy carrier, it can power fuel-cell electric vehicles or be the base for synthetic fuels. Finally, renewable hydrogen can open new avenues for developing clean technology manufactured goods for both internal and export markets.

A consumer hydrogen fuel pump in Germany

Adobe Stock

Policy Brief

The Geopolitics of Renewable Hydrogen

| May 2021

Renewables are widely perceived as an opportunity to shatter the hegemony of fossil fuel-rich states and democratize the energy landscape. Virtually all countries have access to some renewable energy resources (especially solar and wind power) and could thus substitute foreign supply with local resources. Our research shows, however, that the role countries are likely to assume in decarbonized energy systems will be based not only on their resource endowment but also on their policy choices.

Deputy Secretary of Defense Ashton B. Carter speaks at the 3rd Annual ARPA-E Energy Innovation Summit

DoD/Erin A. Kirk-Cuomo

Analysis & Opinions - The Hill

Our National Experiment in R&D for Clean Energy Just Turned 10

The authors recount the history of ARPA-E and describe how it has supported clean energy innovation in the United States. They argue that ARPA-E needs two things in the short term in order to increase its chances of success in the long term: resources and a leader who can channel the country's top science and engineering talent toward particularly tough technical challenges.

an operator inspects a photolithography tool used to manufacture these solar cells.

Daniel Derkacs/SolarJunction

Journal Article - Research Policy

Governments as Partners: The Role of Alliances in U.S. Cleantech Startup Innovation

Accelerating innovation in clean energy technologies is a policy priority for governments around the world aiming to mitigate climate change and to provide affordable energy. Most research has focused on the role of governments financing R&D and steering market demand, but there is a more limited understanding of the role of direct government interactions with startups across all sectors. The authors  propose and evaluate the value-creation mechanisms of network resources from different types of partners for startups, highlighting the unique resources of government partners for cleantech startups. 

Russian President Vladimir Putin speaks during his annual news conference in Moscow

AP/Alexander Zemlianichenko

Journal Article - Bulletin of the Atomic Scientists

How the Next Nuclear Arms Race Will Be Different from the Last One

| 2019

All the world's nuclear-armed states (except for North Korea) have begun modernizing and upgrading their arsenals, leading many observers to predict that the world is entering a new nuclear arms race. While that outcome is not yet inevitable, it is likely, and if it happens, the new nuclear arms race will be different and more dangerous than the one we remember. More nuclear-armed countries in total, and three competing great powers rather than two, will make the competition more complex. Meanwhile, new non-nuclear weapon technologies — such as ballistic missile defense, anti-satellite weapons, and precision-strike missile technology — will make nuclear deterrence relationships that were once somewhat stable less so.