244 Items

stacks of coated steel pipes

AP Photo/Danny Johnston

Paper - Belfer Center for Science and International Affairs, Harvard Kennedy School

Carbon Capture, Utilization, and Storage: Carbon Dioxide Transport Costs and Network-Infrastructure Considerations for a Net-Zero United States

| July 20, 2023

This brief examines the national challenges related to deploying and scaling infrastructure to transport CO₂ from capture sites to storage or utilization sites at a scale consistent with achieving net-zero by 2050.

Shell Norco Manufacturing Complex

AP Photo/Gerald Herbert

Analysis & Opinions - The National Interest

Progress on Carbon Capture, Utilization, and Storage Is Good News

| Mar. 28, 2023

If the world is serious about addressing climate change, we should welcome forward momentum on this critical technology. Getting on track for net zero emissions by 2050 will require swiftly and massively ramping up carbon capture deployment.

Ethanol refinery with carbon capture equipment

AP Photo/Stephen Groves

Policy Brief

Carbon Capture, Utilization, and Storage: Technologies and Costs in the U.S. Context

| January 2022

Carbon capture, utilization, and storage (CCUS) is very likely to be a key technology for achieving the Biden administration's goal of net-zero greenhouse gas emissions by 2050. But absent regulation requiring its use, CCUS needs to become more economical in order for deployment in the United States to expand significantly.

Book - Cambridge University Press

Foundations for a Low-Carbon Energy System in China

How can China make good on its pledge to reach carbon neutrality by 2060? In Foundations for a Low-Carbon Energy System in China, a team of experts from China and the United States explains how China's near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for a smoother and less costly national energy transformation.

Workers shovel waste from a wheat farm into a prototype for a biomass machine

AP/Andy Wong

Journal Article - Proceedings of the National Academy of Sciences of the United States of America

Gasification of Coal and Biomass: A Net Carbon-Negative Power Source for Environment-Friendly Electricity Generation in China

    Authors:
  • Xi Lu
  • Liang Cao
  • Haikun Wang
  • Jia Xing
  • Shuxiao Wang
  • Siyi Cai
  • Bo Shen
  • Qing Yang
  • Chris P. Nielsen
  • Michael B. McElroy
| 2019

Deploying coal-bioenergy gasification systems with carbon capture and storage (CBECCS) provides a promising opportunity for China to realize its carbon mitigation and air pollution abatement goals simultaneously. The authors conducted a comprehensive assessment of CBECCS technology for China, with a focus on plant and fuel configurations (e.g., biomass ratios) and economics, as well as CO2 and greenhouse gas emissions and cobenefits for air quality.

rendering of Carbon Engineering’s air capture design

Courtesy of Carbon Engineering

Journal Article - Joule

A Process for Capturing CO2 from the Atmosphere

    Authors:
  • Geoffrey Holmes
  • David St. Angelo
  • Kenton Heidel
| 2018

The authors describe a process for capturing CO2 from the atmosphere in an industrial plant. The design captures ∼1 Mt-CO2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. They describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. They report results from a pilot plant that provides data on performance of the major unit operations.

View of General Assembly at UN Global Engagement Summit

UN Photo

Discussion Paper - Belfer Center for Science and International Affairs, Harvard Kennedy School

Exponential Innovation and Human Rights

| Feb. 27, 2018

Technological innovation and the politics of global justice are two fields that interact quite extensively in international diplomatic discourse and public debate. Controversial issues, such as accessing essential medicines, reducing greenhouse gases, conserving biological diversity, providing clean energy, and expanding the adoption of green technologies, require answers at the intersection of technological innovation, international diplomacy, and global justice. Our approach is to start off with the broader understanding that justice is rights-based and then proceed to analyze it using a goal-based framework. This brings into sharp focus the relationships between innovation and human rights.

Nov. 23, 2016, a train returns from transporting ballast used in the construction of the Nairobi-Mombasa railway

AP Photo/Ben Curtis

Discussion Paper - Belfer Center for Science and International Affairs, Harvard Kennedy School

African Regional Economic Integration

| Winter 2018

The power of Pan-Africanism as a guiding vision for the continent’s development is widely studied, mostly as an aspirational phenomenon. At worst, Pan-Africanism has often been seen as a poor imitation of American federalism or European integration. Both of these perceptions do not reflect the profound nature of the role that the ideology of Pan-Africanism played in shaping the continent’s economic transformation. 

In 2011, science advisors to the presidents of China and the United States, Wan Gang and John P. Holdren, hold a photo of the historic 1979 U.S.-China agreement on science and engineering.

USDA

- Belfer Center for Science and International Affairs, Harvard Kennedy School Belfer Center Newsletter

Center's Energy Work Wields Impact and Influence Around the World

| Fall/Winter 2016-2017

The Belfer Center began researching energy technology issues in the late 1990s. Its mission was “to determine and promote the adoption of effective strategies for developing and deploying cleaner and more efficient energy technologies that can reduce greenhouse gas emissions, reduce dependence on fossil fuels and stress on water resources, and improve economic development.”

In this issue, we look at the history and influence of the Center’s energy innovation efforts in the past two decades by focusing primarily on ETIP’s work in the U.S. and China.

President Barack Obama gets direction from his science advisor John P. Holdren during an event on the South Lawn of the White House to explore the stars with middle school students.

Reuters

- Belfer Center for Science and International Affairs, Harvard Kennedy School Belfer Center Newsletter

Spotlight on John P. Holdren

| Fall/Winter 2016-2017

As assistant to the president for science and technology, director of the White House Office for Science and Technology Policy, and co-chair of the President’s Council of Advisors on Science and Technology (PCAST), Holdren has worked closely with Obama to reinvigorate America’s scientific capabilities on a range of policy fronts, from climate change and renewable energy to health care and nanotechnology.