172 Items

stacks of coated steel pipes

AP Photo/Danny Johnston

Paper - Belfer Center for Science and International Affairs, Harvard Kennedy School

Carbon Capture, Utilization, and Storage: Carbon Dioxide Transport Costs and Network-Infrastructure Considerations for a Net-Zero United States

| July 20, 2023

This brief examines the national challenges related to deploying and scaling infrastructure to transport CO₂ from capture sites to storage or utilization sites at a scale consistent with achieving net-zero by 2050.

Shell Norco Manufacturing Complex

AP Photo/Gerald Herbert

Analysis & Opinions - The National Interest

Progress on Carbon Capture, Utilization, and Storage Is Good News

| Mar. 28, 2023

If the world is serious about addressing climate change, we should welcome forward momentum on this critical technology. Getting on track for net zero emissions by 2050 will require swiftly and massively ramping up carbon capture deployment.

Ethanol refinery with carbon capture equipment

AP Photo/Stephen Groves

Policy Brief

Carbon Capture, Utilization, and Storage: Technologies and Costs in the U.S. Context

| January 2022

Carbon capture, utilization, and storage (CCUS) is very likely to be a key technology for achieving the Biden administration's goal of net-zero greenhouse gas emissions by 2050. But absent regulation requiring its use, CCUS needs to become more economical in order for deployment in the United States to expand significantly.

Book - Cambridge University Press

Foundations for a Low-Carbon Energy System in China

How can China make good on its pledge to reach carbon neutrality by 2060? In Foundations for a Low-Carbon Energy System in China, a team of experts from China and the United States explains how China's near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for a smoother and less costly national energy transformation.

Travelers from China’s Wuhan and other cities go through body temperature scanners at Narita international airport in Narita, near Tokyo, Thursday, Jan. 23, 2020.

AP Photo/Eugene Hoshiko

Paper - Belfer Center for Science and International Affairs, Harvard Kennedy School

Weaponizing Digital Health Intelligence

| January 2020

This paper argues that these potential vulnerabilities deserve rigorous, urgent, and thorough investigation. First, it draws from cybersecurity literature, and reviews general sources of vulnerability in digital systems. Next, with these sources of vulnerability in mind, it reviews the health intelligence systems used in the US as well as in a current Public Health Emergency of International Concern (PHEIC), the Ebola outbreak in the Democratic Republic of the Congo (DRC). It then It then reviews the possible motives state actors have to attack health intelligence systems, drawing on recent examples of state-led efforts to manipulate, conceal, or undermine health information. It then speculates about what an attack on a health intelligence system might look like. It concludes by proposing a research and education agenda to thoroughly interrogate these issues and generate policy recommendations needed to address them.

biohazard bag in laboratory

Wikimedia CC/R.Bektaev

Analysis & Opinions - CNN

What Digital Nerds and Bio Geeks Have to Worry About

| Sep. 13, 2019

The authors explain how the risks of computer systems are transferring to biological systems. The difference is that biological systems have the potential to cause a greater degree of damage than computer systems. Stringent biocontainment helps, but no containment system provides zero risk.

Workers shovel waste from a wheat farm into a prototype for a biomass machine

AP/Andy Wong

Journal Article - Proceedings of the National Academy of Sciences of the United States of America

Gasification of Coal and Biomass: A Net Carbon-Negative Power Source for Environment-Friendly Electricity Generation in China

    Authors:
  • Xi Lu
  • Liang Cao
  • Haikun Wang
  • Jia Xing
  • Shuxiao Wang
  • Siyi Cai
  • Bo Shen
  • Qing Yang
  • Chris P. Nielsen
  • Michael B. McElroy
| 2019

Deploying coal-bioenergy gasification systems with carbon capture and storage (CBECCS) provides a promising opportunity for China to realize its carbon mitigation and air pollution abatement goals simultaneously. The authors conducted a comprehensive assessment of CBECCS technology for China, with a focus on plant and fuel configurations (e.g., biomass ratios) and economics, as well as CO2 and greenhouse gas emissions and cobenefits for air quality.

rendering of Carbon Engineering’s air capture design

Courtesy of Carbon Engineering

Journal Article - Joule

A Process for Capturing CO2 from the Atmosphere

    Authors:
  • Geoffrey Holmes
  • David St. Angelo
  • Kenton Heidel
| 2018

The authors describe a process for capturing CO2 from the atmosphere in an industrial plant. The design captures ∼1 Mt-CO2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. They describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. They report results from a pilot plant that provides data on performance of the major unit operations.

In 2011, science advisors to the presidents of China and the United States, Wan Gang and John P. Holdren, hold a photo of the historic 1979 U.S.-China agreement on science and engineering.

USDA

- Belfer Center for Science and International Affairs, Harvard Kennedy School Belfer Center Newsletter

Center's Energy Work Wields Impact and Influence Around the World

| Fall/Winter 2016-2017

The Belfer Center began researching energy technology issues in the late 1990s. Its mission was “to determine and promote the adoption of effective strategies for developing and deploying cleaner and more efficient energy technologies that can reduce greenhouse gas emissions, reduce dependence on fossil fuels and stress on water resources, and improve economic development.”

In this issue, we look at the history and influence of the Center’s energy innovation efforts in the past two decades by focusing primarily on ETIP’s work in the U.S. and China.

President Barack Obama gets direction from his science advisor John P. Holdren during an event on the South Lawn of the White House to explore the stars with middle school students.

Reuters

- Belfer Center for Science and International Affairs, Harvard Kennedy School Belfer Center Newsletter

Spotlight on John P. Holdren

| Fall/Winter 2016-2017

As assistant to the president for science and technology, director of the White House Office for Science and Technology Policy, and co-chair of the President’s Council of Advisors on Science and Technology (PCAST), Holdren has worked closely with Obama to reinvigorate America’s scientific capabilities on a range of policy fronts, from climate change and renewable energy to health care and nanotechnology.