59 Items

Visitors look at the models of oil tanker shaped floating nuclear reactors and oil rigs showcased at the display booth of China's state-owned China National Nuclear Corporation during the China International Exhibition on Nuclear Power Industry in Beijing. April 27, 2017 (Andy Wong/Associated Press).

Andy Wong/Associated Press

Journal Article - Maritime Issues

China's Planned Floating Nuclear Power Facilities in South China Sea: Technical and Political Challenges

| Nov. 21, 2018

The operation of the fleet of Chinese floating nuclear power plants in the South China Sea carries with it numerous safety and security risks that may have widespread consequences to not only China but also to Southeast Asia and beyond.

teaser image

Analysis & Opinions - The Nautilus Institute

China's Nuclear Spent Fuel Management and Nuclear Security Issues

| Nov. 10, 2017

In this essay, Hui Zhang reviews the status of spent fuel storage in China.  He suggest that China should take steps to improve physical protection, reduce insider threats, promote a nuclear security culture, and improve nuclear cyber security. He also recommends China, South Korea, and Japans’ nuclear security training centers should cooperate and exchange best practices on insider threat reduction, contingency plans for emergency response, and discuss regional cooperation for long-term spent fuel storage, including building a regional center of spent fuel storage.

teaser image

Paper

The History of Highly Enriched Uranium Production in China

| July 2017

China initiated its nuclear weapon program in 1955 and began to construct its fissile-material production facilities in the late 1950s. China has produced highly enriched uranium (HEU) for weapons at two complexes: Lanzhou gaseous diffusion plant (GDP, also referred as Plant 504) and Heping GDP (the Jinkouhe facility of Plant 814).

In 1958, China started the construction of the Lanzhou plant with advice from Soviet experts. Moscow withdrew all its experts in August 1960, however, forcing China to become self-reliant. On January 14, 1964, the GDP began to produce 90% enriched uranium, which made possible China’s first nuclear test on 16 October 1964.

teaser image

Paper

The History of Plutonium Production in China

| July 2017

China has produced plutonium for weapons at two sites: 1) Jiuquan Atomic Energy Complex (Plant 404) in Jiuquan, Gansu province. This site includes China’s first plutonium reactor (reactor 801) and associated reprocessing facilities. 2) Guangyuan plutonium production complex (Plant 821), located at Guangyuan in Sichuan province. This “third line” site also included a plutonium reactor (reactor 821) and reprocessing facility. While China has not declared officially that it has ended HEU and plutonium production for weapons, it appears that China halted its HEU and plutonium production for weapons in 1987.1

Report - Managing the Atom Project, Belfer Center

The Cost of Reprocessing in China

| January 2016

Faced with the twin pressures of a still-quickly growing economy and unprecedented smog from coal-fired plants, China is racing to expand its fleet of nuclear power plants. As it does so, Beijing is considering making large capital investments in facilities to reprocess spent nuclear fuel and recycle the resulting plutonium in fast neutron reactors that breed more plutonium. This report outlines the enormous costs China would likely face if it decides to build large-scale plants for reprocessing plutonium from spent nuclear fuel and recycling the plutonium in fast neutron reactors.

Analysis & Opinions - Bulletin of the Atomic Scientists

The Experts on Nuclear Power and Climate Change

| December 17, 2015

"Chinese President Xi Jinping reaffirmed at the global climate change conference in Paris that China pledged to achieve peak carbon dioxide emissions by around 2030, and to get around 20 percent of its primary energy from non-fossil sources by 2030. In 2014, China’s non-fossil energy consumption accounted for 11.2 percent of total energy use—hydro power was 8 percent, nuclear power was about 1 percent, and non-hydro renewable energy was around 2 percent—which is very close to the target of 11.4 percent set for 2015. Still, coal supplied the majority (66 percent) of China's total energy consumption in 2014, and oil accounted for about 18 percent of the energy mix. Natural gas, at 5 percent, still accounted for a relatively small share. To double the share of non-fossil sources by 2030, what role can nuclear power play?"

Announcement - Managing the Atom Project, Belfer Center

2016-2017 Harvard Nuclear Policy Fellowships

| December 15, 2015

The Project on Managing the Atom offers fellowships for pre-doctoral, post-doctoral, and mid-career researchers for one year, with a possibility for renewal, in the stimulating environment of the Belfer Center for Science and International Affairs at the Harvard Kennedy School. The online application for 2016-2017 fellowships opened December 15, 2015, and the application deadline is January 15, 2016. Recommendation letters are due by February 1, 2016.

Analysis & Opinions - Bulletin of the Atomic Scientists

China’s rapidly expanding centrifuge enrichment capacity

| December 7, 2015

"With the aftermath of the Iran agreement hanging in the air, words such as “centrifuge,” “enrichment,” and “uranium” are still appearing regularly in news coverage. Which means that now is a good time to look at the enrichment capacity of a much larger power, thousands of miles away: China. The country’s enrichment capacity is a topic about which little has appeared in the popular press—possibly because little is publicly known, and what information there is has to be assembled, verified, and evaluated from many different independent sources."

Journal Article - Taylor and Francis Science & Global Security

China's Uranium Enrichment Complex

| October 23, 2015

New public information allows a fresh estimate of China's current and under-construction uranium enrichment capacity. This paper uses open source information and commercial satellite imagery to identify and offer estimates of the capacity of China's 10 operating enrichment facilities, located at 4 sites, using centrifuge technology most likely based on adapting Russian technology. The total currently operating civilian centrifuge enrichment capacity is estimated to be about 4.5 million separative work units/year (SWU/year), with additional capacity estimated to be about 2 million SWU/year under construction. Also China could have an enrichment capacity of around 0.6 million SWU/year for non-weapon military uses (i.e., naval fuel) or dual use. These estimates are much larger than previous public estimates of China's total enrichment capacity. Further expansion of enrichment capacity may be likely since China will require about 9 million SWU/year by 2020 to meet the enriched uranium fuel needs for its planned nuclear power reactor capacity of 58 gigawatts-electric (GWe) by 2020 under its policy of self-sufficiency in the supply of enrichment services.