Articles

6 Items

teaser image

Journal Article - Climatic Change

Expert Views — and Disagreements — About the Potential of Energy Technology R&D

| June 2016

In order to make R&D funding decisions to meet particular goals, such as mitigating climate change or improving energy security, or to estimate the social returns to R&D, policy makers need to combine the information provided in this study on cost reduction potentials with an analysis of the macroeconomic implications of these technological changes. The authors conclude with recommendations for future directions on energy expert elicitations.

The Smoky Hills Wind Farm as seen from Interstate 70 in Kansas, 2 November 2009.

Creative Commons

Journal Article - Energy & Environmental Science

How Much Bulk Energy Storage is Needed to Decarbonize Electricity?

| 2015

High cost and technical immaturity of bulk (multi-hour) electricity storage (BES) systems are often cited as major hurdles to increasing the penetration of intermittent renewables. The authors use a simple model to assess the economics of BES under carbon emissions constraints.

Jerusalem Mayor Nir Barkat, left, and Israeli-U.S. entrepreneur, Shai Agassi, founder a project developing electric cars and a network of charging points, next to an electric car and its charging station in Jerusalem, Oct. 22, 2009.

AP Photo

Journal Article - Innovations

Energy for Change: Introduction to the Special Issue on Energy & Climate Change

| Fall 2009

"Without energy, there is no economy. Without climate, there is no environment. Without economy and environment, there is no material well-being, no civil society, no personal or national security. The overriding problem associated with these realities, of course, is that the world has long been getting most of the energy its economies need from fossil fuels whose emissions are imperiling the climate that its environment needs."

A CO2 injection well in the SACROC oil field in West Texas.

Photo by Jeffrey Bielicki

Journal Article - International Regional Science Review

Optimal Spatial Deployment of Carbon Dioxide Capture and Storage Given a Price on Carbon Dioxide

| Forthcoming

Carbon dioxide capture and storage (CCS) links together technologies that separate carbon dioxide (CO2) from fixed point source emissions and transport it by pipeline to geologic reservoirs into which it is injected underground for long-term containment. Previously, models have been developed to minimize the cost of a CCS infrastructure network that captures a given amount of CO2. The CCS process can be costly, however, and large-scale implementation by industry will require government regulations and economic incentives. The incentives can price CO2 emissions, through a tax or a cap-and-trade system, or involve the purchase of CO2 by oil companies for enhanced oil recovery from depleted oil fields.