Reports & Papers

64 Items

Tomas Roggero via Flickr

Tomas Roggero via Flickr

Report Chapter - Women’s International League for Peace and Freedom

Assuring Destruction Forever: 2022 Edition

| January 2022

Under the guidance of its self-defence nuclear strategy, China will continue to modernise its nuclear force in order to maintain a reliable second-strike retaliatory capability. China’s nuclear weapon modernisation has been responsive to the advances of military capabilities of other countries, particularly the US. As Hu Side emphasised, “The sole purpose for China to maintain a limited nuclear counterattack force is to deter a potential nuclear strike. However, the development of US missile defense and the long-rang strike capability with high accuracy to target mobile missiles is in practice to decrease the effectiveness of Chinese nuclear deterrence. Thus, it surely leads to Chinese attention."

Demonstration reprocessing and mixed-oxide facilities under construction in Gansu Province, China. Satellite image from August 29, 2019.

Maxar Technologies/Google Earth

Report Chapter - Nonproliferation Policy Education Center

China’s Uranium Enrichment and Plutonium Recycling 2020-2040: Current Practices and Projected Capacities

| March 2021

Since 2010, China has significantly expanded its indigenous enrichment capacity to meet the expected rapid increase of enrichment requirements. Meanwhile, China has expanded its plutonium reprocessing and recycling capabilities for “saving uranium.” The purpose of this report is to provide a better understanding of the development of China’s uranium enrichment and plutonium recycling programs.

teaser image

Paper - Institute for Nuclear Materials Management

Assessing China's Plutonium Separation and Recycling Programs

| July 2020

China pursues actively its closed fuel-cycle policy. In 2010, it began testing a pilot civilian reprocessing plant (50 tHM/year). In 2015, China began construction of the demonstration reprocessing plant (200 tHM/year). China has also been negotiating with France over the purchase of a commercial reprocessing plant with a capacity of 800 tHM/year. China’s Experimental Fast Reactor (20 MWe) started operation in 2010. Construction of the CFR-600 demonstration fast reactor began in 2017. This work will assess those plutonium separation and recycling programs. Further, it will estimate their cumulative plutonium production and discuss the potential uses of separated plutonium in China’s fast reactors over next two decades.

teaser image

Paper - Institute of Nuclear Materials Management

The Development Status of China's Uranium Enrichment

| July 2020

China leads the world in term of nuclear power development pace and new reactor construction. To meet the expected rapid increase of enrichment requirements, since 2010 the China National Nuclear Corporation (CNNC) has expanded significantly its indigenous centrifuge enrichment capacity. However, China does not officially release information on its enrichment capacity. Based on satellite imagery, Chinese publications, and discussions with Chinese experts, this work will examine the current status of China's uranium-enrichment development and offer significant new estimates of the capacity of China's operating enrichment facilities.

teaser image

Paper - Institute of Nuclear Materials Management

On China's Closed Fuel Cycle Strategies

| July 2018

As it expands its fleet of nuclear power plants, China faces an important decision: whether to make large capital investments in facilities to reprocess spent nuclear fuel and recycle the resulting plutonium in fast neutron reactors, or continue to store nuclear fuel, leaving for the future decisions on whether to reprocess the fuel or dispose of it as waste. In reaching a decision, policymakers should consider financial costs, the available fuel supply, nuclear security and proliferation risks, health and environmental dangers, and spent fuel management issues. This paper will first discuss the status of China’s breeder reactors and civilian reprocessing programs. It will then examine the costs and fuel supply issues associated with reprocessing.