Energy

235 Items

stacks of coated steel pipes

AP Photo/Danny Johnston

Paper - Belfer Center for Science and International Affairs, Harvard Kennedy School

Carbon Capture, Utilization, and Storage: Carbon Dioxide Transport Costs and Network-Infrastructure Considerations for a Net-Zero United States

| July 20, 2023

This brief examines the national challenges related to deploying and scaling infrastructure to transport CO₂ from capture sites to storage or utilization sites at a scale consistent with achieving net-zero by 2050.

Shell Norco Manufacturing Complex

AP Photo/Gerald Herbert

Analysis & Opinions - The National Interest

Progress on Carbon Capture, Utilization, and Storage Is Good News

| Mar. 28, 2023

If the world is serious about addressing climate change, we should welcome forward momentum on this critical technology. Getting on track for net zero emissions by 2050 will require swiftly and massively ramping up carbon capture deployment.

Ethanol refinery with carbon capture equipment

AP Photo/Stephen Groves

Policy Brief

Carbon Capture, Utilization, and Storage: Technologies and Costs in the U.S. Context

| January 2022

Carbon capture, utilization, and storage (CCUS) is very likely to be a key technology for achieving the Biden administration's goal of net-zero greenhouse gas emissions by 2050. But absent regulation requiring its use, CCUS needs to become more economical in order for deployment in the United States to expand significantly.

Book - Cambridge University Press

Foundations for a Low-Carbon Energy System in China

How can China make good on its pledge to reach carbon neutrality by 2060? In Foundations for a Low-Carbon Energy System in China, a team of experts from China and the United States explains how China's near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for a smoother and less costly national energy transformation.

Report - Global Efficiency Intelligence

Deep Decarbonization Roadmap for the Cement and Concrete Industries in California

| September 2019

Cement production is one of the most energy-intensive and highest carbon dioxide (CO2) emitting manufacturing processes. The goal of this study is to develop a roadmap for decarbonization of California's cement and concrete production. In this study, the authors look at the current status of cement and concrete production in California and develop scenarios up to 2040 to analyze different decarbonization levers that can help to reduce CO2 emissions of cement and concrete production in California.

Workers shovel waste from a wheat farm into a prototype for a biomass machine

AP/Andy Wong

Journal Article - Proceedings of the National Academy of Sciences of the United States of America

Gasification of Coal and Biomass: A Net Carbon-Negative Power Source for Environment-Friendly Electricity Generation in China

    Authors:
  • Xi Lu
  • Liang Cao
  • Haikun Wang
  • Jia Xing
  • Shuxiao Wang
  • Siyi Cai
  • Bo Shen
  • Qing Yang
  • Chris P. Nielsen
  • Michael B. McElroy
| 2019

Deploying coal-bioenergy gasification systems with carbon capture and storage (CBECCS) provides a promising opportunity for China to realize its carbon mitigation and air pollution abatement goals simultaneously. The authors conducted a comprehensive assessment of CBECCS technology for China, with a focus on plant and fuel configurations (e.g., biomass ratios) and economics, as well as CO2 and greenhouse gas emissions and cobenefits for air quality.

Dave Johnson coal-fired power plant is silhouetted against the morning sun

AP/J. David Ake

Magazine Article - Fair Observer

Sacrificing Nature Is Not an Option

    Author:
  • Kourosh Ziabari
| Feb. 27, 2019

In this edition of "The Interview," Fair Observer talks to Professor John Holdren, former science adviser to President Barack Obama and director of the White House Office of Science and Technology Policy from 2009 to 2017 about the impacts of global warming on the United States and the government's strategies to combat climate change.

a man looks up near smoke spewing from a chimney near the Jiujiang steel and rolling mills in Qianan

AP/Ng Han Guan, File

Journal Article - Nature Sustainability

Air Quality–Carbon–Water Synergies and Trade-offs in China's Natural Gas Industry

    Authors:
  • Yue Qin
  • Lena Höglund-Isaksson
  • Edward Byers
  • Kuishuang Feng
  • Fabian Wagner
  • Denise L. Mauzerall
| Sep. 14, 2018

Both energy production and consumption can simultaneously affect regional air quality, local water stress and the global climate. Identifying the air quality–carbon–water interactions due to both energy sources and end-uses is important for capturing potential co-benefits while avoiding unintended consequences when designing sustainable energy transition pathways. The authors examine the air quality–carbon–water interdependencies of China's six major natural gas sources and three end-use gas-for-coal substitution strategies in 2020.

rendering of Carbon Engineering’s air capture design

Courtesy of Carbon Engineering

Journal Article - Joule

A Process for Capturing CO2 from the Atmosphere

    Authors:
  • Geoffrey Holmes
  • David St. Angelo
  • Kenton Heidel
| 2018

The authors describe a process for capturing CO2 from the atmosphere in an industrial plant. The design captures ∼1 Mt-CO2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. They describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. They report results from a pilot plant that provides data on performance of the major unit operations.