Energy

12 Items

teaser image

Paper

The History of Highly Enriched Uranium Production in China

| July 2017

China initiated its nuclear weapon program in 1955 and began to construct its fissile-material production facilities in the late 1950s. China has produced highly enriched uranium (HEU) for weapons at two complexes: Lanzhou gaseous diffusion plant (GDP, also referred as Plant 504) and Heping GDP (the Jinkouhe facility of Plant 814).

In 1958, China started the construction of the Lanzhou plant with advice from Soviet experts. Moscow withdrew all its experts in August 1960, however, forcing China to become self-reliant. On January 14, 1964, the GDP began to produce 90% enriched uranium, which made possible China’s first nuclear test on 16 October 1964.

teaser image

Paper

The History of Plutonium Production in China

| July 2017

China has produced plutonium for weapons at two sites: 1) Jiuquan Atomic Energy Complex (Plant 404) in Jiuquan, Gansu province. This site includes China’s first plutonium reactor (reactor 801) and associated reprocessing facilities. 2) Guangyuan plutonium production complex (Plant 821), located at Guangyuan in Sichuan province. This “third line” site also included a plutonium reactor (reactor 821) and reprocessing facility. While China has not declared officially that it has ended HEU and plutonium production for weapons, it appears that China halted its HEU and plutonium production for weapons in 1987.1

Report - Managing the Atom Project, Belfer Center

The Cost of Reprocessing in China

| January 2016

Faced with the twin pressures of a still-quickly growing economy and unprecedented smog from coal-fired plants, China is racing to expand its fleet of nuclear power plants. As it does so, Beijing is considering making large capital investments in facilities to reprocess spent nuclear fuel and recycle the resulting plutonium in fast neutron reactors that breed more plutonium. This report outlines the enormous costs China would likely face if it decides to build large-scale plants for reprocessing plutonium from spent nuclear fuel and recycling the plutonium in fast neutron reactors.

Report - Managing the Atom Project, Belfer Center

China's Uranium Enrichment Capacity: Rapid Expansion to Meet Commercial Needs

| August 20, 2015

Based on satellite imagery, Chinese publications, and discussions with Chinese experts, This report suggests that China has much more civilian enrichment capacity than previously thought, and even more is on the way. If these new estimates are correct, China has enough enrichment capacity to meet its nuclear power fuel requirements for the coming decade and beyond. Further, China will have excess enrichment capacity and will likely become a net exporter of commercial enrichment services.

Report - Managing the Atom Project, Belfer Center

China's Access to Uranium Resources

| May 26, 2015

Official plans in China call for a three-fold increase in nuclear energy by 2020, and much more is under consideration for the coming decades. How will China get the uranium it needs to feed its ambitious nuclear energy plans for the coming decades? This report suggests that between domestic uranium mining, uranium purchased on the international market, and uranium mined by Chinese-owned companies overseas, the security of China’s uranium supply will not pose a challenge to China’s nuclear power development, even under the most ambitious scenarios for growth.

Report - Managing the Atom Project, Belfer Center

Advancing Nuclear Security: Evaluating Progress and Setting New Goals

In the lead-up to the nuclear security summit, Advancing Nuclear Security: Evaluating Progress and Setting New Goals outlines what was accomplished in a four-year effort launched in 2009 to secure nuclear material around the globe—and what remains to be done. The effort made significant progress, but some weapons-usable nuclear materials still remain “dangerously vulnerable." The authors highlight the continuing danger of nuclear and radiological terrorism and call for urgent action.

Armed guards and police protecting a spent fuel convoy while at a stopping point.

Ministry of Public Security (Ch)

Report - Managing the Atom Project, Belfer Center

Securing China's Nuclear Future

| March 14, 2014

China’s approach to strengthening the security of its nuclear weapons, materials, and facilities plays an important role in facilitating strong global action on nuclear security. This report provides a better understanding of Chinese perceptions of the threat of nuclear terrorism and attitudes toward the nuclear security challenge; describes the current status of nuclear security practices in China and of planned improvements in rules and organization, management, and technologies; and recommends steps for further improvements.

Report - International Panel on Fissile Materials

The Uncertain Future of Nuclear Energy

    Editor:
  • Frank N. von Hippel
    Authors:
  • Anatoli Diakov
  • Ming Ding
  • Tadahiro Katsuta
  • Charles McCombie
  • M.V. Ramana
  • Tatsujiro Suzuki
  • Susan Voss
  • Suyuan Yu
| September 2010

In the 1970s, nuclear-power boosters expected that by now nuclear power would produce perhaps 80 to 90 percent of all electrical energy globally. Today, the official high-growth projection of the Organization for Economic Co‑operation and Developments (OECD) Nuclear Energy Agency (NEA) estimates that nuclear power plants will generate about 20 percent of all electrical energy in 2050. Thus, nuclear power could make a significant contribution to the global electricity supply. Or it could be phased out — especially if there is another accidental or a terrorist-caused Chernobyl-scale release of radioactivity. If the spread of nuclear energy cannot be decoupled from the spread of nuclear weapons, it should be phased out.

The No.1 and No. 2 reactors at the Tianwan Nuclear Power Plant in Lianyungang city, China, 22 Mar. 2009. The Tianwan power plant is designed to have eight reactors.

AP Photo

Paper

China's Current Spent Fuel Management and Future Management Scenarios

| July 2010

China's recent nuclear energy ambitions have put it in the forefront of research and development in the nuclear industry.This paper will first discuss the status of China's current spent fuel management methods and storage capability. Second, this paper will estimate and calculate the accumulated spent fuel and required spent fuel storage up to 2040 based on three different nuclear development scenarios. Third, future spent fuel management scenarios from now to 2040 are designed and financial costs and proliferation risks are evaluated and discussed associated with each scenario. Last, policy recommendations will be provided for the future spent fuel.