Environment & Climate Change

48 Items

Book Chapter - Routledge

Nuclear Disarmament, Nuclear Energy, and Climate Change

| March 2019

Preventing nuclear war and avoiding catastrophic climate change are two of the most basic challenges facing human civilization in the twenty-first century. While these are separate issues, these challenges are linked in several ways, and both may be affected by the future of nuclear energy. For nuclear energy to provide any substantial part of the low-carbon energy needed in the second half of the twenty-first century would require dramatic growth. This chapter provides an overview of the constraints and risks of nuclear energy growth on that scale, and the necessary steps to address them. In particular, use of nuclear energy at that scale would place unprecedented demands on global systems for verification, control, and security for weapons-usable nuclear materials. Deep reductions in nuclear arms and their eventual prohibition will also require new approaches to managing the vast global stocks of weapons-usable nuclear materials. Politically, nuclear energy may not be able to grow on the scale required unless governments and publics are confident that it will not contribute to the spread of nuclear weapons, creating another link between climate mitigation and nuclear nonproliferation and disarmament.

teaser image

Analysis & Opinions - The Diplomat

With Growth of Coal Power Plants, Vietnam's Future Is Grim

| January 12, 2017

On January 12, 2017, the academic journal Environmental Science & Technology published a study by researchers from Harvard University, Greenpeace, and the University of Colorado Boulder titled “Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast Asia.” Based on official data on the future installation of coal-fired power plants in Southeast Asia and atmospheric transport modelling, the research group presented a grim picture of regional air pollution due to emissions from these plants.

Discussion Paper - Managing the Atom Project, Belfer Center

The Three Overlapping Streams of India's Nuclear Power Programs

| April 15, 2016

As India’s civilian nuclear energy program expands with the assistance of international nuclear suppliers, it creates new potential pathways to the acquisition of fissile material that could be diverted for military purposes. A key question is whether and how India’s civilian and military nuclear facilities are separated. In this discussion paper from the Belfer Center’s Project on Managing the Atom, Kalman A. Robertson and John Carlson argue that India has not established a complete and verifiable separation of its civilian and military nuclear programs. The authors recommend steps for India to take under its safeguards agreement with the International Atomic Energy Agency to provide assurances to all states that components of its civilian program are not contributing to the growth of its nuclear arsenal. These steps include renouncing options that would facilitate the use of safeguarded items to produce unsafeguarded nuclear material, and placing the proliferation-sensitive components of its nuclear power industry under continuous safeguards.

Analysis & Opinions - Bulletin of the Atomic Scientists

The Experts on Nuclear Power and Climate Change

| December 17, 2015

"Chinese President Xi Jinping reaffirmed at the global climate change conference in Paris that China pledged to achieve peak carbon dioxide emissions by around 2030, and to get around 20 percent of its primary energy from non-fossil sources by 2030. In 2014, China’s non-fossil energy consumption accounted for 11.2 percent of total energy use—hydro power was 8 percent, nuclear power was about 1 percent, and non-hydro renewable energy was around 2 percent—which is very close to the target of 11.4 percent set for 2015. Still, coal supplied the majority (66 percent) of China's total energy consumption in 2014, and oil accounted for about 18 percent of the energy mix. Natural gas, at 5 percent, still accounted for a relatively small share. To double the share of non-fossil sources by 2030, what role can nuclear power play?"

Announcement - Managing the Atom Project, Belfer Center

2016-2017 Harvard Nuclear Policy Fellowships

| December 15, 2015

The Project on Managing the Atom offers fellowships for pre-doctoral, post-doctoral, and mid-career researchers for one year, with a possibility for renewal, in the stimulating environment of the Belfer Center for Science and International Affairs at the Harvard Kennedy School. The online application for 2016-2017 fellowships opened December 15, 2015, and the application deadline is January 15, 2016. Recommendation letters are due by February 1, 2016.

News - Managing the Atom Project, Belfer Center

Fresh Ideas for the Future: Symposium on the NPT Nuclear Disarmament, Non-proliferation, and Energy

Apr. 30, 2015

On April 28, the Project on Managing the Atom joined the James Martin Center for Nonproliferation Studies at the Middlebury Institute of International Studies at Monterey, The Netherlands government, and the United Nations Office for Disarmament Affairs (UNODA) in convening nuclear nonproliferation experts from around the world at the United Nations to participate in a Symposium on the 2015 Nonproliferation Treaty (NPT) Review Conference.

Journal Article - Taylor and Francis Journal of Risk Research

Socio-Technical Challenges of Nuclear Power Production and Waste Management after Fukushima

This special issue of the Journal of Risk Research, guest edited by Behnam Taebi and Ibo van de Poel presents a number of papers that deal with the socio-technical challenges of nuclear power production and nuclear waste management in the post-Fukushima era, from nuclear power as a climate mitigation strategy to the participatory turn in radioactive waste management and responsible risk communication.

Discussion Paper - Energy Technology Innovation Policy Project, Belfer Center

Energy Technology Expert Elicitations for Policy: Workshops, Modeling, and Meta-analysis

| October 2014

Characterizing the future performance of energy technologies can improve the development of energy policies that have net benefits under a broad set of future conditions. In particular, decisions about public investments in research, development, and demonstration (RD&D) that promote technological change can benefit from (1) an explicit consideration of the uncertainty inherent in the innovation process and (2) a systematic evaluation of the tradeoffs in investment allocations across different technologies. To shed light on these questions, over the past five years several groups in the United States and Europe have conducted expert elicitations and modeled the resulting societal benefits. In this paper, the authors discuss the lessons learned from the design and implementation of these initiatives.