Science & Technology

72 Items

Announcement - Science, Technology, and Public Policy Program, Belfer Center

STPP Fellowships, 2014–2015

November 25, 2013

Each year, the Science, Technology, and Public Policy (STPP) Program at the Belfer Center for Science and International Affairs at the Harvard Kennedy School welcomes new pre- and post-doctoral fellows and visiting researchers to a select team of scholars exploring the critical role that science and technology play in everyday life.

Volkswagens Golf electric cars and Touareg hybrid cars pass by Tiananmen Square in Beijing, China, 6 April 2011. Volkswagen China announced that the first demonstrative electric car motorcade of Volkswagen worldwide will be in Beijing.

AP Photo

Journal Article - Energy Policy

Oil Development in China: Current Status and Future Trends

    Authors:
  • Linwei Ma
  • Zheng Li
  • Pei Liu
| June 2012

This paper attempts to present a full picture of the current status and future trends of China's oil development through system analysis. The authors design three scenarios of China's oil demand in 2030 and analyze policy implications for oil conservation, automotive energy development, and energy security. From their analysis, they draw some conclusions for policy decisions, such as controlling total oil consumption to avoid energy security risks, enhancing oil conservation in all sectors with the emphasis on road transportation, and increasing investment in oil production and refining to secure oil supply and reduce emissions.

News - Energy Technology Innovation Policy Project, Belfer Center

DOE Budget Authority for Energy Research, Development, & Demonstration Database

| February 29, 2012

This document contains February 2012 updates to our database on U.S. government investments in energy research, development, demonstration, and deployment (ERD3) through the Department of Energy. The database, in Microsoft Excel format, tracks DOE appropriations from FY 1978–2011 and the FY 2012 and 2013 budget requests and includes funding for ERD3 from the American Recovery and Reinvestment Act of 2009. It also includes several charts.

Report - Energy Technology Innovation Policy Project, Belfer Center

Transforming U.S. Energy Innovation

The United States and the world need a revolution in energy technology—a revolution that would improve the performance of our energy systems to face the challenges ahead. In an intensely competitive and interdependent global landscape, and in the face of large climate risks from ongoing U.S. reliance on a fossil-fuel based energy system, it is important to maintain and expand long-term investments in the energy future of the U.S. even at a time of budget stringency. It is equally necessary to think about how to improve the efficiency of those investments, through strengthening U.S. energy innovation institutions, providing expanded incentives for private-sector innovation, and seizing opportunities where international cooperation can accelerate innovation. The private sector role is key: in the United States the vast majority of the energy system is owned by private enterprises, whose innovation and technology deployment decisions drive much of the country's overall energy systems.

teaser image

News - Energy Technology Innovation Policy Project, Belfer Center

Background: Transforming U.S. Energy Innovation Report

The report, Transforming U.S. Energy Innovation, released on Nov. 22, 2011,is the result of a three-year energy research, development, demonstration, and deployment (ERD3) project of the Energy Technology Innovation Policy (ETIP) research group at Harvard Kennedy School's Belfer Center for Science and International Affairs. The ERD3 project was funded by a grant from the Doris Duke Charitable Foundation to produce and promote a comprehensive set of recommendations to help the U.S. administration accelerate the development and deployment of low-carbon energy technologies.

Sept. 1, 2010: A coal-fired power plant's emissions are seen during the night in Changchun, China. China spent $34.6 billion on clean energy in 2009.

AP Photo

Journal Article - International Journal of Greenhouse Gas Control

Preparing to Ramp up Large-scale CCS Demonstrations: An Engineering-economic Assessment of CO2 Pipeline Transportation in China

| July 2011

An integrated carbon dioxide (CO2) capture and storage (CCS) system requires safe and cost-efficient solutions for transportation of the CO2 from the capturing facility to the location of storage. While growing efforts in China are underway to understand CO2 capture and storage, comparatively less attention has been paid to CO2 transportation issues. Also, to the best of our knowledge, there are no publicly available China-specific cost models for CO2 pipeline transportation that have been published in peer-reviewed journals. This paper has been developed to determine a first-order estimate of China's cost of onshore CO2 pipeline transportation.

The world's first grid-scale, flywheel-based energy storage plant is being built in Stephentown, N.Y. The plant is being built by Beacon Power Corporation (NASDAQ: BCON) & is supported by a $43 million loan guarantee from DOE.

Beacon Power Corp. Photo

Report - Energy Technology Innovation Policy Project, Belfer Center

Transforming the Energy Economy: Options for Accelerating the Commercialization of Advanced Energy Technologies

"The focus of the workshop was on the demonstration stage of the technology innovation cycle. Current policies do not adequately address the private sector’s inability to overcome the demonstration "valley of death" for new energy technologies. Investors and financiers fear that the technology and operational risks at this stage of the cycle remain too high to justify the level of investment to build a commercial-sized facility."

Conceptual drawing of a single B&W mPower™ nuclear reactor module inside its own independent, underground containment.

Babcock & Wilcox Photo

Report - Energy Technology Innovation Policy Project, Belfer Center

Tranforming the Energy Economy: Options for Accelerating the Commercialization of Advanced Energy Technologies—Framing Statement

"There is broad political consensus that the current energy system in the United States is unable to meet the nation's future energy needs, from the security, environment, and economic perspectives. New energy technologies are required to increase the availability of domestic energy supplies, to reduce the negative environmental impacts of our energy system, to improve the reliability of current energy infrastructure (e.g., smart grid, energy storage), and to increase energy efficiency throughout the economy."

- Belfer Center for Science and International Affairs, Harvard Kennedy School

Belfer Center Newsletter Winter 2010-11

| Winter 2010-11

The Winter 2010/11 issue of the Belfer Center newsletter features recent and upcoming activities, research, and analysis by members of the Center community on critical global issues. This issue highlights a major Belfer Center conference on technology and governance, the Center's involvement in the nuclear threat documentary Countdown to Zero, and a celebration of Belfer Center founder Paul Doty.