Assessing the Regional Implementation Pathways of National Wide ETS In China

WU LIBO
School of Economics, Fudan University
Center for Energy Economics And Strategy Studies
School of Data Science, Fudan University
Contents

• **Empirical Assessment** of the pilot ETS: Contradictory Stylized facts

• **Numerical Simulation** of the regional impacts under various national wide ETS scenarios

• **Uncertainties** with the regional implementation pathways: remaining issues to be considered
1.1 Fiscal Expenditure and Industry Structure

More concern for environmental protection

- More environmental protection fiscal expenditure except for Hubei Province;
- Endogenous relationships?

Slight change of industrial structure

- Slight decline of energy intensity shares but also rebound in some regions;
- No great difference compared to the non treatment groups

Source: NBSC
1.2 Electricity, Heat Production and Supply

- **Regionally**: less electricity, heat production and supply industries except Beijing;

- **Nationally**: not exactly, there are more important factors for structure;

- **Purpose for pilots** (not fierce)

Source: Wind
1.3 Share of Emission for Pilots

- Decreasing share of emission for pilots
 - Pollutant-haven
 - Technology (Energy efficiency, energy structure and etc.)
 - Relative magnitude

Source: Provincial Statistical Yearbook
1.4 Intensity performance

- Emission intensity declined significantly;
 - The pilots declined faster than the national average, with a lower initial level.;

- Energy intensity also experienced a decline;
 - Speed is similar to national average;

- Hubei Province performed well in intensity.
1.5 Verification for performance

<table>
<thead>
<tr>
<th>Treatment Effect</th>
<th>Authors</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zhang et al. (2017)</td>
<td>Pilot policies of carbon market trading can effectively reduce carbon</td>
</tr>
<tr>
<td></td>
<td>Wang et al (2019)</td>
<td>emissions; PSM-DID;</td>
</tr>
<tr>
<td></td>
<td>Fan et al.(2017)</td>
<td>Supporting the "Weak Porter Hypothesis": Carbon market did not improve the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TFP of pilots, but significantly improve technology; DEA and DID;</td>
</tr>
<tr>
<td></td>
<td>Zhou et al. (2019)</td>
<td>carbon market effectively reduced emission intensity of pilot, mainly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>through industry structure; LMDI and DID;</td>
</tr>
<tr>
<td></td>
<td>Wang et al.(2018)</td>
<td>Four factors of effectiveness: reduction potential, quota tightness, carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>price and economic fluctuation; DID;</td>
</tr>
<tr>
<td>Model Simulation</td>
<td>Qian et al.(2018)</td>
<td>Carbon market could bring about a decline in the total national carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emissions; CGE;</td>
</tr>
<tr>
<td></td>
<td>Tang et al.(2016)</td>
<td>Carbon market can mitigate pollution-heaven effect, which can be further</td>
</tr>
<tr>
<td></td>
<td></td>
<td>amplified taking auction to allocate; IRD-CGE</td>
</tr>
<tr>
<td></td>
<td>Li et al.(2019)</td>
<td>Carbon market has co-benefit in mitigating NOx and PM2.5;</td>
</tr>
</tbody>
</table>
Contents

• Empirical Assessment of the pilot ETS: Contradictory Stylized facts

• Numerical Simulation of the regional impacts under various national wide ETS scenarios

• Uncertainties with the regional implementation pathways: remaining issues to be considered
MODEL STRUCTURE AND FEATURES

Model Structure & Data base:

- 30 Regions, 42 industries;
- 3 factors -- Capital, Labor & Emission Permits;
- 2 Agencies – Households & Regional Governments;
- “Small Economy” in international trade; “Large Economy” in domestic trade;
- Data base -- 2007 Regional Input-Output Data.

Function Module:

- Production & Demand Module;
- Recursive Dynamic Module;
- Inter-regional economic interaction and correlation module;
- Energy & Emission Module.
SCENARIOS -- BAU

<table>
<thead>
<tr>
<th>CODE</th>
<th>TARGETS</th>
<th>ALLOCATION</th>
<th>FLEXIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>NULL</td>
<td>Without any climate and energy policies</td>
<td></td>
</tr>
</tbody>
</table>
| S2 | BAU | 2005 ~ 2010: *Notice on the Completion of 11th FYP Regional Energy Conservation Targets*
2010 ~ 2015: *Work Program on GHG Controlling for 12th FYP*
Economic Costs:

- yearly average GDP growth 8.26% in BAU, 8.54% in NULL;
- Nonlinear correlation between economic costs & emission/intensity reduction targets.

![Graph showing economic costs and output loss](image_url)
Regional Effects:

- Energy intensive & industrializing regions (Mid/Northern) most affected;
- Energy exporting regions also affected;
- Less energy intensive regions (eastern coastal regions & southern regions) are less sensitive.
Industrial Effects:

- General industrial structure is slightly changed, given the industrialization process in China;
- Share of energy intensive sectors decreased observably;
- Industrial Structure change mitigates the impacts of policy shocks.
Climate Policies:

<table>
<thead>
<tr>
<th>CODE</th>
<th>TARGETS</th>
<th>ALLOCATION</th>
<th>FLEXIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>EM_NTP</td>
<td>Regional Emission in Base-year</td>
<td>Non-tradable</td>
</tr>
<tr>
<td>S4</td>
<td>EM_TP</td>
<td>Regional Output in Base-year</td>
<td>Tradable</td>
</tr>
<tr>
<td>S5</td>
<td>OPT_NTP</td>
<td>Regional Output in Base-year</td>
<td>Non-tradable</td>
</tr>
<tr>
<td>S6</td>
<td>OPT_TP</td>
<td>Regional Welfare in Base-year</td>
<td>Tradable</td>
</tr>
<tr>
<td>S7</td>
<td>WLF_NTP</td>
<td>Regional Welfare in Base-year</td>
<td>Non-tradable</td>
</tr>
<tr>
<td>S8</td>
<td>WLF_TP</td>
<td>Regional Welfare in Base-year</td>
<td>Tradable</td>
</tr>
</tbody>
</table>

Total Emission Constraint (Set According to BAU)

Allocation Criterions:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission</td>
<td>$EM_r \leq \tau \cdot \overline{EM_r}$</td>
</tr>
<tr>
<td>Output</td>
<td>$EM_r \leq \tau \cdot (\overline{OP_r}/\sum_r \overline{OP_r}) \cdot \sum_r \overline{EM_r}$</td>
</tr>
<tr>
<td>Welfare</td>
<td>$EM_r \leq \tau \cdot (\overline{U_r}/\sum_r \overline{U_r}) \cdot \sum_r \overline{EM_r}$</td>
</tr>
</tbody>
</table>
Conflicts between Efficiency & Equity:

- Allocation of permits determines regional MAC;
- Economic Efficiency: equalized MAC;
- Social Equity: equalized welfare/economic losses;

⇒ No guarantee for the existence of a certain allocation satisfies both requirements;

⇒ Reallocation of permits for income transfer leads to extra losses.
Decoupled Economic Efficiency with Initial Allocation:

- High MAC: Buy permits; Low MAC: Sell permits;
- Pareto optimization: equalized MAC.

\[\Rightarrow \text{Emission reduction rate negatively related to MAC} \]
Effects of Emission Trading Scheme:

- Economic efficiency – by equalizing MAC across regions
- Policy flexibility – by narrowing economic/welfare losses across alternative allocation criterions

⇒ Emission trading bridged concerns for efficiency & equity.

⇒ Emission trading provide permits with financial value;

⇒ Reallocation of permits would lead to income redistribution without significant losses in economic efficiency.
Base-Year Emission Criterion:

- Least distortion and lowest economic loss in non-trading scenario;
- Income transfer from industrialized to industrializing areas;
- Favorable to energy-intensive regions;

Emission Trading in EM_T Scenario

GDP Growth Rate Decrease in EM_T Scenario
Base-Year Output Criterion:

- Income transfer opposite to EMT criterion;
- Low income western and middle areas and most affected;

Emission Trading in OPT_T Scenario

GDP Growth Rate Decrease in OPT_T Scenario
Base-Year Welfare Criterion:
- Highest distortion in non-tradable scenarios;
- Income transfer from Southern to Mid & Northern areas;
- Favorable to areas with higher consumption share.

Emission Trading in WLF_T Scenario

GDP Growth Rate Decrease in WLF_T Scenario
Without any policy intervention, the pollution haven in western-northern China will be intensified.

1. Share of Energy intensive Sectors (NULL)

2. Share of Manufacturing Industries (NULL)

3. Transfer of Energy Intensive Sectors (NULL)

4. Transfer of Manufacturing Industries NULL
• Intensity targets can strengthen the pollution haven in western-northern China

1. Spatial distribution of energy intensive sectors (BAUVs.NULL)

2. Spatial distribution of manufacturing sectors (BAUVs.NULL)
• ETS using auction can reduce the transfer of energy intensive sectors

3. Spatial distribution of energy intensive sectors (AUCVs. BAU)

4. Spatial distribution of manufacturing sectors (AUCVs.BAU)
• GDF can switch the transfer of energy intensive sectors significantly

5. Spatial distribution of energy intensive sectors
 (GDF Vs.BAU)

6. Spatial distribution of manufacturing sectors (GDFVs.BAU)
• Auction can reduce the transfer of energy intensive sectors significantly

3. Spatial distribution of energy intensive sectors (AUCVs. BAU)

4. Spatial distribution of manufacturing sectors (AUCVs.BAU)
Auctioning outperforms Grandfathering in terms of reducing transfer of energy intensive sectors to western regions

1. Spatial distribution of energy intensive sectors (GDF Vs. AUC)

2. Spatial distribution of manufacturing sectors (GDF Vs. AUC)
• **Empirical Assessment** of the pilot ETS: Contradictory Stylized facts

• **Numerical Simulation** of the regional impacts under various national wide ETS scenarios

• **Uncertainties** with the regional implementation pathways: remaining issues to be considered
Uncertainties with the Factors Incentivizing the national ETS

Regional disparity of Co-benefits of climate policies

• Co-benefits of climate policies: reduced local pollutants and its related health impacts
 – Production choice of firms: reducing output, energy structure change, end-of pipe treatment, production technology innovation, management efficiency improvement
 – Policy choice of government: Optimal alternative policies realizing same pollution emission reduction and health effects: environmental protection policies with diversified social welfare change and output change
 – Consumption choice of consumers: income disparity across regions and the consumption mode of energy service, diversified WTP for environmental goods and global public goods
Interaction of other relevant policies in place with climate policies

- **Mandatory standards (latent subsidies to output):** energy intensity, carbon intensity, renewable portfolio standards

- **Direct Subsidies to specific sectors:** electricity and natural gas subsidies to residential sectors, renewable producers, nuclear producers,

- **Mixed Price signal from three pillars of ETS:** carbon permits, pollutant permits, energy saving credits

- **Investment intervention from** Industrial policies, trade policies and financial policies

- **Incomplete cost Pass-through and deviation from optimal choice due to the factor market:** especially electricity market, natural gas market and so on
For global public goods, can price signal generate effective supply and demand at regional level?

If not, can regional environmental policies generate enough co-benefits of climate change targets? Or we need complementary policies for quantity control and strengthen the fiscal transfer at national level?

Price control is more effective
To fix the price level, the observed emission under real marginal abatement costs will differ slightly from the optimal emission

Quantity control is more effective
To fix the emission level, the observed price under the real marginal abatement cost will not differ greatly from the optimal price
欢迎批评指正！

Thank you for your attention