Weapons of the Marginalized

Authoritarian Bargaining Under the Threat of Sabotage

Trevor Johnston

2016-2017 Postdoctoral Research Fellow
Middle East Initiative, Belfer Center
Harvard Kennedy School

Associate Political Scientist
Affiliate Faculty
Pardee RAND Graduate School
RAND Corporation
Middle East Initiative
Belfer Center for Science and International Affairs
Harvard Kennedy School
79 JFK Street, Cambridge, MA 02138
617-495-4087

www.belfercenter.org/MEI

The Middle East Initiative at Harvard Kennedy School is dedicated to advancing public policy in the Middle East by convening the world’s foremost academic and policy experts, developing the next generation of leaders, and promoting community engagement on campus and in the region.

Statements and views expressed in this working paper are solely those of the authors and do not imply endorsement by Harvard University, the Harvard Kennedy School, the Belfer Center for Science and International Affairs, or the Middle East Initiative. This working paper has not undergone formal review and approval.

This working paper and the research presented herein were completed by the author as part of a Middle East Initiative (MEI) Research Fellowship. MEI Research Fellowships are made possible by the generosity of the Emirates Leadership Initiative at Harvard Kennedy School, a collaboration between MEI and the Center for Public Leadership at HKS, supported by the Government of the United Arab Emirates.

This paper is a part of the Middle East Initiative Research Series, which presents the work of MEI Research Fellows, Harvard Faculty Research Grant Recipients, and other MEI research affiliates. View the full series on the MEI website.

Copyright belongs to the author(s). Publications may be downloaded for personal use only.
Cover Design & Layout by Andrew Facini and Chris Mawhorter
Weapons of the Marginalized: Authoritarian Bargaining Under the Threat of Sabotage

Trevor Johnston*

May 1, 2017

Abstract
Over the past decade, the small Gulf state of Qatar has targeted migrant workers, an otherwise marginalized community, with increasingly extravagant spending projects and other distributive goods and services. These targeted goods present us with a puzzling question: *why provide benefits to the marginalized?* In answering this question, I offer a theory of authoritarian bargaining under the threat of sabotage. All autocrats must solicit the support of various groups in society, whose loyalty is crucial to regime survival. Whether purchased or coerced, this support does not come cheap, making autocrats dependent on constant production and growth. To the extent marginalized groups are critical to such production, they have the capacity to threaten costly economic sabotage. This threat provides marginalized groups with a potential bargaining power that is simply nonexistent in traditional theories of authoritarianism. In testing my theory, I draw on a unique GIS dataset from Qatar. My empirical strategy exploits the spatial segregation of Qatar to show how distributive goods are targeted to those areas at the greatest risk of sabotage. At the same time though, these high risk areas also receive a disproportionate share of state security installations, representing the potential complementarity between cooptation and repression.

Key Words Authoritarianism · Political Economy · Persian Gulf · Repression and Cooptation · Spatial Politics

I thank Richard Anderson, Vincent Arel-Bundock, Timm Betz, Jennifer Bussel, William Roberts Clark, Cari Coe, Robert Franzese, Anna Grzymala-Busse, Maiko Heller, Allen Hicken, Pauline Jones-Luong, Edmund Malesky, Brian Min, James Morrow, Amy Pond, Mark Tessler, George Tsebelis, and Gary Uzonyi for helpful comments. All remaining errors are my own.
1 Introduction

For the marginalized, life under authoritarian rule can be especially hard. Politically disenfran-
chised and socially ostracized, these vulnerable groups enjoy few protections or rights. From Idi
Amin’s expulsion of Indians in Uganda, to Saddam Hussein’s use of chemical weapons against Iraqi
Kurds, marginalized groups have been a frequent and all too easy target for abuse. Such discrimi-
nation and brutality has hardly gone unnoticed. These regimes often receive wide condemnation,
notoriety, and become the focus of significant scholarship (Friedrich and Brzezinski 1965; Tullock
1987; Linz 2000; Turits 2004). Yet while these regimes exist, and certainly deserve public atten-
tion, they represent but a minority of cases.

Modern authoritarian rule, and the treatment of marginalized groups, in particular, is far more
varied and complicated than these cases suggest. As we move beyond such dictators, we find that
most autocrats do not rely solely, or even principally, on repression to survive. Nor do they simply
target marginalized groups with unremitting abuse. In fact, under some regimes, these commu-
nities even receive targeted benefits. The Arabian Gulf state of Qatar is one such case. Over the
past decade, the Qatari regime has targeted migrant workers, an otherwise marginalized group,
with increasingly extravagant spending projects and other distributive goods and services. Such
targeting is not only inexplicable for existing theory, but also runs contrary to popular narratives
on authoritarianism in the Gulf and beyond. Ultimately, Qatar’s puzzling behavior reveals an un-
derlying complexity to modern authoritarian rule, leading to the question: why provide benefits
to the marginalized?

Having been systematically excluded, the marginalized are often assumed inconsequential to
leader survival. As such, existing political economic theories tend to ignore the marginalized al-
together, focusing instead on elites and the autocrat’s broader selectorate (Bueno de Mesquita et.
al. 2004; Acemoglu et. al. 2008). But in some regimes, these groups cannot be ignored. Migrant
workers represent the largest marginalized group in Qatar today. Filling positions both banal and
critical, these non-citizens comprise 94 percent of the active workforce, making Qatar utterly de-
pendent on them (QSA 2010). Less clear is how this dependence translates into bargaining power
for these marginalized groups. Although crucial to the political economy of the state, foreign work-
ers represent a subaltern class with no prospect of ever receiving citizenship or access to Qatar’s
generous welfare system. These disenfranchised migrants have become a permanent minority in
the country, subject to rampant abuse, discrimination and exploitation.¹ And yet despite their sys-
tematic exclusion, this group has also received targeted distributive goods. In recent years, migrant
communities in Qatar have received benefits that include new housing projects,² entertainment
complexes,³ and athletic facilities.⁴

¹For a recent account of these abuses, see Amnesty International (2013, 2014).
These targeted goods are surprising in light of traditional political economic models, which implicitly assume marginalized groups lack the bargaining power needed to extract such benefits from the state. Their treatment in Qatar challenges this assumption and suggests that omitting the marginalized could be theoretically problematic. That being said, this targeting does not reflect a real shift in coalition lines or growth in the selectorate. While this spending has grown, it has not coincided with any less repression. Ghettoization and draconian immigration law remain the regime’s principal means of controlling these marginalized communities (Longva 1999; Crystal 2005). Clearly, efforts to coopt this growing (and increasingly restive) population have not come at the expense of traditionally repressive strategies. The Qatari case ultimately reveals an unappreciated complexity to modern authoritarian rule, calling for theoretical refinement and a better, more thorough discussion of the role of the marginalized within these regimes.

To help explain such complexity, I develop a theory of authoritarian bargaining under the threat of sabotage. I begin with a simple premise: to survive, all autocrats must solicit the support of various groups in society. Generally, we can think of this support as everything from the passive compliance that sustains a ruler’s popular legitimacy (Levi 1989), to elite loyalty when facing a challenger (Bueno de Mesquita et. al. 2004; Egorov and Sonin 2011). However conceptualized, the value of this support derives from these groups’ political power or influence within society. Autocrat survival thus reduces to a bargaining game between the autocrat and these groups, who exchange their support for selective benefits. Lacking any real value or influence, the marginalized are typically absent in such bargaining theories, which predict that these groups should receive few, if any, targeted benefits.

But even if their support is worthless, the marginalized are not entirely powerless. The power of the marginalized lies outside traditional bargaining dynamics, and comes from these groups’ vital role within the economy. Whether through repression or cooptation, building a large support base does not come cheap and depends on continuous growth and production. To the extent marginalized groups are critical to such production, they have the capacity to threaten costly economic sabotage. In the spirit of Scott’s “weapons of the weak” (1985), sabotage refers to the myriad of ways a marginalized group can challenge the regime by destroying capital or impeding its growth. As the marginalized take on a greater role within the economy and across vital sectors, the threat of sabotage grows. Regimes vulnerable to such attacks may be forced to provide these marginalized groups with distributive benefits, hoping to prevent sabotage before it compromises production. Ultimately, this threat provides marginalized groups with a potential bargaining power that is simply nonexistent in traditional theories of authoritarianism.

In testing my theory, I return to the motivating case of Qatar and draw on a unique spatial dataset that maps goods and services across the country. My empirical strategy exploits the spatial segregation of groups in Qatar to evaluate the relationship between distributive targeting and the location of marginalized communities. Consistent with my theory, I find evidence that the Qatari regime differentiates among the marginalized, selectively providing goods and services to those
groups who are the biggest threat of sabotage. A disproportionate share of benefits flow to migrant workers in areas that represent the greatest political and economic threat to the regime. At the same time though, these areas are also targeted with more security installations, military personnel and police.

The rest of the paper proceeds as follows. In Section 2, I begin with a brief survey of existing theory and its implications for authoritarian bargaining. Building on this discussion, Section 3 then introduces the threat of sabotage. Section 4 develops a set of hypotheses on the threat of sabotage and the conditions under which autocrats provide distributive benefits to marginalized groups. In Section 5, I consider the empirical implications for Qatar. I introduce the data, discuss my empirical strategy, and conduct the analysis. Finally, Section 6 concludes with a discussion on the main findings and broader welfare implications.

2 Authoritarian Bargaining as Support-Buying

No autocrat rules alone. Even in the most personalistic dictatorship, the ruler depends on the support of key allies and groups within society (Geddes 1999; Acemoglu et. al. 2009). Most political economic theories of authoritarianism thus reduce to some kind of bargaining game, where the autocrat negotiates with groups, exchanging goods and services for their support. Whether conceptualized as durable coalitions, a collection of corporatist interests, or even popular constituencies, the autocrat must build a support base comprising these vital groups (Bueno de Mesquita et. al. 2004; Besley and Kudamatsu 2007; Acemoglu et. al. 2008; Myerson 2008; Svolik 2009).

In bargaining with these groups, the autocrat can use various tools at his disposal, both coercive (i.e., repression) and persuasive (i.e., cooption) (Wintrobe 1998). Over the long-run though, no autocrat can survive using repression alone (Crystal 1994). Repression works best in response to some immediate challenge or, as a more blunt instrument, in coercing compliance. These measures are far less effective when it comes to ensuring loyalty or constructing a durable coalition of supporters. To survive and prosper over time, the autocrat needs more than just compliance or passive obedience: he needs active support. And when building such a durable coalition of supporters, repression will not suffice. The autocrat must ensure that these supporters’ loyalty persists even when challenged. By using targeted benefits, the autocrat can tie supporters’ welfare to his own, investing them in the regime and its survival (Yom 2011). Without these private benefits, supporters would defect at the first opportunity or whenever threatened. In short, to achieve real stability, the autocrat cannot simply coerce loyalty, but must purchase it, making support-buying the bedrock of modern authoritarian rule.

Less clear is what exactly this support looks like. More than just political loyalty, we can think of support as some effort made on behalf of the ruler. Autocrats depend on support across a myriad of venues, helping them develop and craft new policies, and manage the state apparatus (Stepan
In semi-democratic or competitive authoritarian regimes, this support is often channeled through institutions like legislatures (Gandhi and Przeworski 2006, 2007) and parties (Brownlee 2007). And yet even in these more institutionalized regimes, political actors depend on support outside formal venues, mobilizing non-electoral support through street politics and militias (Cammett and Issar 2010; Cammett 2014). Such support is especially crucial during periods of instability. At other times, support may be more passive, better resembling loyalty to the state (Anderson 1987), political quiescence, or compliance (Levi 1989; Tsai 2011). Absent a direct threat, authoritarian stability depends more on the passive acceptance of the status quo than actually getting boots on the streets.

Whatever the form, autocrats rely on the support of key groups in society, who vary depending on the specific regime and the coalition of interests that sustain it. Generally speaking, the most valuable of these groups are described as elites. From the banal administration of the state, to monitoring and disrupting opposition movements, elites play a crucial role in regime maintenance and survival. Elites with control over prominent institutions (e.g., the military), or even those outside the state apparatus (e.g., holding personal fiefdoms in semi-autonomous regions), are especially valuable to the autocrat. By coopting these elites, the autocrat not only builds his support base, but also reduces the number of potential challengers to his rule (at least, so long as they remain coopted). Of course, the loyalty of such a group does not come cheap. But it is a first-order concern, especially during economic crisis, when elite defection threatens even the most stable hegemonic party (Reuter and Gandhi 2011).

Beyond this elite stratum, autocrats also depend on political support from broader constituencies and social groups. A large support base may deter challengers and, in the case of revolt, serve as a popular bulwark against opposition movements. Facing a mass-uprising, autocrats often rely on para-military organizations and ordinary citizens to help slow the spread of protest (Horvath 2011). An overwhelming show of support in the streets not only signals the ruler’s popularity, but also the regime’s power (Smyth, Sobolev and Soboleva 2013). Such a signal may intimidate the opposition, pushing them to demobilize without having the regime resort to state violence or costly repression. Moreover, even when not under attack, this support can further help to ensure broad compliance from society. A mass support base can “neutralize dissent” while giving the regime much-needed “public credibility” (Yom 2011, 223). With a large support base, a ruler can expect less dissent or vocal opposition to his policies. At a minimum, the perception of broad regime support may induce preference falsification, discouraging open challenges so long as (true) preferences remain suppressed (Kuran 1989, 1991).

How much support is needed, and from whom, will vary considerably across states. For regimes steeped in identity politics and countries divided by major cleavages, autocrats tend to build their support coalitions around their own ethnic, sectarian or tribal groups (Khoury and Kostiner 1990; Abd al-Jabbar and Dawod 2003). In other cases, the regime relies on constituencies defined by socio-economic characteristics, comprising powerful corporatist interests built around class or sec-
tor (Blaydes 2006; Hinnebusch 1990). Often times, these cleavages overlap or reinforce each other, sharply dividing society along coalitional lines. While certainly context dependent, all autocrats rely on some set of politically valuable groups, whose support is vital to their survival.

Marginalized groups are notably, though not surprisingly, absent in this discussion. As the disenfranchised, they fall outside of the ruler’s selectorate (Bueno de Mesquita et. al. 2004), let alone elite coalition (Acemoglu et. al. 2008). Having been systematically excluded, the marginalized are precisely those groups lacking any real political or social capital. In practice, they include historically disenfranchised ethnic or sectarian groups like the Shia in Bahrain (Louer 2013, 2014), poor communities like the stateless bidoon in Kuwait (Al-Nakib 2000), and even recent migrants to a country, like the millions of South Asian workers found throughout the Arabian Gulf (Gardner 2010). Given their subaltern status, these groups enjoy only some of the rights and benefits conferred upon “full,” native-born, and documented citizens. In terms of regime survival, their political support is largely inconsequential, neither helping to defend against a well-entrenched challenger, nor providing legitimacy to a ruler facing revolt. Ultimately, within in a traditional support-buying framework, we should not expect the marginalized to receive any targeted benefits.

3 Marginalized Groups and the Threat of Sabotage

And yet despite their exclusion, marginalized groups are not entirely powerless. Even if the autocrat does not need their support, the marginalized can influence regime survival by threatening costly economic sabotage. Whether buying support or coercing compliance, survival does not come cheap, and the autocrat must continuously raise revenues. Constant revenue generation thus underlies the entire support-buying exchange, making the autocrat’s survival dependent on production and the actors critical to this process. The threat of sabotage provides marginalized groups with a potential bargaining power absent from traditional political economic theories of authoritarianism.

Formally, let us define sabotage as any act that destroys capital or obstructs its creation. Such a broad and encompassing definition allows for sabotage to be either destructive or obstructive in nature. Destructive sabotage includes more traditional attacks on the economy, like protests, strikes, and violent riots. Each of these acts interrupts production by suspending economic activity and/or depreciating capital. Beyond these material costs, destruction may also influence public perception. Such sabotage is publicly observable and may damage the autocrat’s reputation or credibility. This public signal can have major economic effects, scaring off foreign investors and shaking the confidence of local firms. For the saboteur, this observability also implies a greater likelihood of being punished. Even if not revolutionary in scope, destructive sabotage may be seen as a direct threat against the regime and inspire a harsh response.
Sabotage may also be obstructive, slowing down production by withholding some vital input (e.g., labor) or increasing transaction costs. In today’s integrated global economy, disrupting supply chains, even just by delay, can have major consequences for firms and investors. Bottlenecks and slowdowns create friction costs, decreasing productivity and leading to unseen deadweight losses. If widespread, such sabotage can be especially pernicious for an economy, and as potentially damaging as destruction. Often hidden from public view, it is difficult to detect obstruction and punish saboteurs. Ultimately, to prevent obstruction, autocrats must provide sufficient incentives to ensure that even the marginalized profit from production and feel invested in the regime.

Over the past decade, sabotage has become a growing threat in the Arabian Gulf. Though often cited for its exceptional robustness (Byman and Green 1999; Herb 2002), the stability of the Gulf belies an underlying fragility and latent opposition (Okruhlik 1999). The Gulf states are utterly dependent on marginalized groups, whose critical role in production has made these regimes vulnerable to sabotage. While some of these marginalized groups are nominally citizens and other native-born residents of these countries (e.g., Bahraini Shia or the Kuwaiti bidoon), most are migrant workers from Asia. Long-reliant on foreign labor, the Gulf’s demand for migrant workers has grown dramatically since the oil-boom of the 1970s (Baldwin-Edwards 2011; Shah 2012). Table 1 reports the most recent estimates of migrants across the Gulf, as a share of both the total population and active workforce. Non-citizens constitute a majority of the population in all of the Gulf states except Oman and Saudi Arabia, but even in these states migrants clearly outnumber citizens in the workforce.

Foreign workers are employed across all economic sectors, holding positions both banal and critical to these political economies. Without these workers, oil and gas would be left in the ground, floors would remain unswept, and construction sites found vacant. As evident in Figure 1, this dependence has only grown over time. Drawing on data from the Gulf Labor Markets and Migration program, we see that most of the Gulf states experienced a secular a growth in the share of foreigners in their population from 1970 to 2010. This growth has made these states increasingly vulnerable to sabotage.

Such vulnerability has resulted in periodic acts of sabotage across the region. At the height of the Arab Spring in 2011, strikes erupted throughout Oman. These protests even reached the capital of Muscat, where workers blocked exits, seized vehicles and stopped production at a manufacturing estate on the outskirts of the city. A year later, strikes among oil and gas workers briefly compro-

5Of the six Gulf states, only Kuwait saw a net decline over this period, which was largely due to the 1991 Gulf War, when many non-citizens fled or were deported for being seen as a security threat.

mised energy production, forcing the regime to act quickly and promise concessions. Such strikes have been especially common in the UAE, where in 2013, workers for the prominent construction firm Arabtec refused to report to their job sites. The strike came at an especially inopportune time for the company, which was less than three weeks away from releasing new shares to investors. Arabtec’s stock price fell after the first day of the strike, and the work stoppage soon spread from Dubai to Abu Dhabi, affecting major projects across both Emirates.

Though less common, Qatar has also seen the occasional strike or act of public resistance. In November 2014, hundreds of workers from two construction companies went on strike after complaining of poor “pay, accommodations and working conditions.” These companies had illegally re-written their workers’ contracts and forced employees to accept these new conditions. For days, the strike went unreported, having been contained to a single camp within the worker ghetto of Industrial City. In other cases, however, media quickly report on these stories, like a school bus strike in 2013, and a taxi strike in 2014.

In each of the cases described above, sabotage has been relatively modest in scale and obstructive in nature. These acts have interrupted production and signaled grievances without resorting to destruction. At other times, sabotage has been much more violent, with disgruntled workers and other marginalized groups attacking infrastructure and destroying capital. Protests in Dubai escalated into full-blown riots in March 2006, when workers went on a “rampage” over “harsh working conditions, low or delayed pay, and the general lack of rights” (Kapiszewski 2006, 12). Oman experienced similar violence with riots and looting in the industrial port city of Sohar in 2011. And no Gulf state has witnessed the same level of destruction and violence as that seen in Bahrain. Bahrain, of course, is admittedly a special case: the regime must not only contend with the challenge from migrant workers, but also the majority Shia population, which has been historically disenfranchised (Louer 2014). The marginalized Shia community was the driving force behind the uprising of 2011, and continues to stage violent protests throughout the country. These protests have often been distinctly economic, coinciding with Bahrain’s largest international event, the annual Formula One Grand Prix. Protestors have exploited the event’s publicity to send a strong signal to the international community and potential investors.

Whether destructive or obstructive, sabotage is a constant threat to production in the Gulf, giving the marginalized a new weapon to extract concessions from these states. Sabotage can be seen as an extension of James Scott’s seminal work on peasant resistance and the “weapons of the weak”

13September 17, 2013. "Academic: Rare bus driver strike could have ripple effect in Qatar " DohaNews.com
(1985). Scott describes these methods as “informal, often covert,” with fundamentally distributive goals that are “concerned largely with immediate, de facto gains” (Scott 1985, 29-33). Like workers across the Gulf today, Scott recounts how servants could resist their masters “by performing their work carelessly and inefficiently” (1985, 33). Sabotage extends this logic to migrants and other marginalized groups, who are often crucial to their states’ economies but remain exploited and politically excluded. The question then becomes, how do marginalized groups use this influence to extract benefits?

4 Policy Responses to the Threat of Sabotage

In its simplest form, my argument is one of bargaining under threat. By incorporating the threat of sabotage into our traditional bargaining theories, we may be able to better capture the role that marginalized groups play across authoritarian regimes. This threat alone may influence the autocrat’s distributive calculus. In a world of complete information, we should expect sabotage (at least the more public and destructive acts) to be rare, representing an out-of-equilibrium behavior. If feasible, the autocrat would prefer to prevent sabotage altogether, responding in anticipation to the threat before it becomes a reality. We can think of this threat as an expected cost, comprising two parts: the risk (or likelihood) of an attack, and the potential cost (or economic losses) incurred from sabotage.

First consider the risk of sabotage. Even if the potential costs are significant, the actual threat of sabotage may be negligible if attack is a low-probability event. The likelihood of sabotage depends on a group’s capacity to overcome the many hurdles that plague collective action. These same challenges may undermine sabotage as well, making it harder for marginalized groups to credibly threaten production. Coordination may be especially difficult when the marginalized do not represent some homogeneous group or class. Lacking a common language, culture or religion, diversity can undermine broader attacks (Gardner 2012). At the same time, authoritarian regimes may use spatial segregation to further divide groups, frustrating collective action while also helping monitor movement and opposition activity. These passive forms of repression are instrumental to disrupting coordination among groups and decreasing the threat of sabotage. Marginalized groups unable to credibly threaten sabotage will not enjoy the same kind of influence when bargaining with the autocrat as those groups who can overcome such challenges.

Notwithstanding the many hurdles described above, groups can more easily coordinate when they are densely concentrated in a given area and can regularly interact. In expectation, the risk of sabotage should be increasing in areas where marginalized groups predominate. All things being equal, it is easier to coordinate when groups live near each other or share a common workplace (e.g., construction site or factory). Repeated, local interaction makes communication possible, helping groups overcome basic coordination problems. Such communication is critical when it comes to more expansive campaigns of sabotage, like those seen in Bahrain in 2011 and in the UAE in 2013.
In addition to risk, sabotage threat also depends on the severity or potential cost of an attack. Losses may be strictly economic (e.g., destruction of capital, reduced productivity), or take the form of broader reputation costs (e.g., increased uncertainty among investors and other regime supporters). These costs should be increasing in the degree to which marginalized groups can attack sensitive areas or vital economic sectors. Marginalized groups in the proximity of government installations and other administrative buildings represent a major threat to the regime, especially when sabotage is destructive or takes the form of open resistance. In Oman in 2011, protests were often located in highly public areas (like a prominent downtown traffic-circle) or near government buildings, which helped to maximize attention. The publicity of such a protest compounds any direct economic costs, shaming the regime in the eyes of the international community and investors.

Access to critical sectors thus increases a group’s sabotage potential. All things being equal, interrupting production within vital economic sectors is more costly, making marginalized groups employed in these industries a greater potential threat. Which sectors are particularly critical to the economy is, of course, context dependent, reflecting the relative endowments of the state and how these different industries or sectors contribute to production. At a more micro-level, the threat of sabotage is increasing in areas where marginalized groups can easily attack these sensitive targets. In purely spatial terms, this access could be simple distance: increasing proximity to potential targets makes it easier for protestors to march to a government structure or factory. When marginalized groups reside near these buildings or industries, the threat of destructive sabotage may be especially pronounced. Alternatively, we could think about access in terms of employment and the individual’s capacity to slow down production within the workplace. This form of sabotage is typically covert and obstructive. To the extent the marginalized reside near their places of work, these two forms of access (and distinct modes of sabotage) should largely coincide. It becomes more problematic, however, when these groups are not employed in the same areas in which they reside, attenuating the relationship between access and distance.\footnote{I return to this problem in the empirics below and consider how this issue constrains the analysis.}

Taken together, the threat of sabotage should be greatest in areas where both the risk of attack and potential costs are high. These conditions jointly determine the relative threat of sabotage, both across regimes and within them. Such variation further implies that the autocrat should condition his response, differentiating among marginalized groups according to the relative threat they pose. The question remains though, given such a threat, how will the autocrat respond?

The multiplicity of policy instruments offers the autocrat great flexibility, allowing him to tailor his response to the distinct demands and challenges that he faces. Cooptation is an especially attractive option for autocrats hoping to avoid sabotage altogether. At their most effective, these measures are preemptive, pacifying marginalized groups and removing threats before they result in actual attacks. Although in principle the autocrat may use broad policy concessions to coopt the marginalized (Malesky and Schuler 2010), these measures are less preferred than more targeted benefits. In competitive authoritarian regimes, electoral strategies often depend more on
the delivery of patronage than on large policy concerns (Lust-Okar 2006). Distributive goods and services provide geographically concentrated benefits, allowing for more granular targeting and clientelistic exchanges (Cammett and Issar 2010). Moreover, policy concessions can set a dangerous precedent, relaxing the autocrat’s control and opening up space for future challenges. This concern may be especially acute in countries with large marginalized populations, where major concessions could very well mean the end of the regime and the rigid hierarchy that sustains it. If broad policy concessions can be avoided, autocrats would prefer to do so with targeted benefits, buying off groups/areas depending on their relative threat. This prediction is formalized in the following hypothesis.

Hypothesis 1: Targeted benefits should be increasing in areas that represent a greater threat of sabotage.

The targeted provision of distributive goods likely represents a first-best response for the autocrat. It improves welfare (without making major concessions), helping to resolve grievances and invest marginalized groups in the system. Targeted at those groups or areas that represent a greater threat, these benefits should reduce the likelihood and severity of sabotage. But such a policy may not always be possible or preferred. This cooptive strategy resembles support-buying and, as such, can become prohibitively expensive or simply infeasible. If groups are not segregated or cleanly sorted, such a differentiated response may be impossible and targeted benefits less efficient. In which case, the autocrat may employ a more repressive approach, coercing compliance instead of buying support. Crucially though, these approaches need not be substitutes and may be used simultaneously, working through different channels or even complementing each other.

Whereas the cooptive strategy is agnostic to the specific mode of sabotage (i.e., it works to discourage both destruction and obstruction), repressive tools are often more flexible and conditionally effective. Active forms of repression are especially useful when a regime is threatened by destructive sabotage, making investments in military and police forces crucial. Overt challenges to the regime (e.g., violent riots), can be suppressed with the rapid deployment of security forces, which we should expect to be located in areas that represent the greatest threat of destructive sabotage. Alternatively, such coercive instruments are less useful when responding to the threat of obstruction. Often hidden, these acts of sabotage must first be identified, making surveillance technologies, monitoring devices and other forms of passive control more effective. All told, this logic leads to the following two hypotheses.

Hypothesis 2a: As the threat of destructive sabotage increases, the autocrat should draw on more active forms of repression (e.g., military/police personnel and equipment).
Hypothesis 2b: As the threat of obstructive sabotage increases, the autocrat should draw on more passive forms of repression (e.g., censorship, segregation).

Collectively, these hypotheses offer an explanation to the motivating puzzle that began this paper. In short, autocrats provide benefits to marginalized groups to prevent sabotage. Neither benevolent nor universal, the autocrat targets these benefits to those groups that represent the greatest threat to economic production. Beyond simply incorporating the marginalized into a traditional bargaining framework, this argument also differentiates among these groups. Such nuance is critical to explaining why some marginalized groups receive benefits and others do not. To test my theory, I return to the case of Qatar in the next section, where I evaluate the degree to which distributive policies respond to sabotage threat.

5 Segregation and Distributive Targeting in Qatar: An Empirical Test of Sabotage

Having developed my general theory of bargaining under the threat of sabotage, I now consider the theory’s main predictions situated within the Qatari context. A small peninsula in the Arabian Gulf, Qatar is an absolutist monarchy with vast resources and a small native citizen population. By any standard measure, Qatar can be classified as authoritarian. Absent democratic institutions, Qatar resembles many other autocratic states with power highly consolidated among a narrow elite. In this case, these elites are mostly members of the royal family, the Al Thani, who dominate the state apparatus and have vast influence throughout the private sector (Herb 1999). Along with a monarchical culture built around credible commitment, the Qatari regime has effectively managed internal elite conflicts, avoiding bloody coups and other costly transitions (Menaldo 2011, 2012). As the quintessential rentier state, the regime’s support is predicated on a generous welfare system (Yom 2011). Subsidies, public sector jobs and housing grants are just some of the many benefits that are offered citizens and used to buy their support.

Yet however robust this regime and broad its support base, Qatar remains utterly dependent on foreign workers, a systematically marginalized population whose numbers (and grievances) have only grown over time. At its last census in 2010, Qatar’s population was estimated to be nearly 1.7 million, of whom 86 percent were non-citizens. This demographic imbalance is even greater in the workforce, with foreign labor accounting for nearly 94 percent of the employed population. Table 2 reports the estimated number of foreign workers by economic sector in Qatar in 2010. Unsurprisingly, construction is the most popular sector at just over half a million workers. Foreign workers are nonetheless found in large numbers across various sectors, employed in household activities, manufacturing and other service industries. While individual workers may be seen as

18From 1971 to the present, Qatar has received a Polity score of -10, the lowest possible.
replaceable, as a class, they are indispensable to Qatar’s economy.

Although a majority of the population, foreign workers enjoy few of the rights and protections conferred upon Qatari citizens. This politically disenfranchised population is left vulnerable to systemic abuse, which some critics have alleged is tantamount to “indentured servitude” under “near-feudal conditions.”\(^\text{19}\) Human rights groups and other non-governmental organizations have detailed these abuses, releasing a series of scathing reports over the past few years.\(^\text{20}\) These conditions are not unique to Qatar. Across the Gulf, migrant workers confront structural hurdles that limit their capacity to seek redress or even protect themselves (Longva 1997; Gardner 2012). Many of these hurdles are by design, and rooted in the body of immigration law known as the \textit{kafala}. The \textit{kafala} system requires that non-citizens be sponsored by a citizen or company if they are to be granted entry for work in Qatar. Continued employment and legal residence is conditional on this sponsorship. Even in cases where the terms of their contracts have been grossly violated, workers cannot change jobs or leave the country without the permission of their sponsors.

Notwithstanding their marginalized status, even migrants in Qatar are not entirely powerless. It is precisely this combination of growing grievances, a lack of alternative options, and profound economic importance that makes these migrant workers such a significant threat of sabotage. In recent years, small-scale strikes have begun to make news in Qatar, inspiring fears of greater sabotage. According to Qatar’s 2013 annual economic report, falling labor productivity has resulted in “a non-oil and gas economy operating below its potential” (QEO 2013, 9). The report further warned that capital investments alone could not solve these inefficiencies, and “would require changes in the incentives faced by various actors in Qatar’s labour market” (QEO 2013, 9). With oil prices having fallen precipitously in recent months, productivity losses in non-energy sectors have come at an especially inopportune time. And Qatar has now begun to curb spending as it predicts its first budget deficit since 2000.\(^\text{21}\)

\textbf{Data and Empirical Strategy}

Hoping to maintain production and, at least, prevent more costly acts of sabotage, the Qatari state has begun to target benefits to marginalized groups. If my theory is correct, the regime should differentiate among marginalized groups, varying targeted benefits according to a group’s sabotage threat. Such a strategy operates at a local level (e.g., camps and housing compounds), having testable implications for the spatial distribution of goods and services across Qatar.

In testing my theory, I draw on a unique spatial dataset. Most of the data were collected by the Qatari state as part of their urban planning and development strategy. These data are broken into

\(^{20}\)For recent examples, see Human Rights Watch (2012, 2013) and Amnesty International (2013, 2014).
a series of GIS files gathered by different government agencies. Of these files, I focus on two: water and electricity, and landmarks. The water and electricity data serve as a master file, comprising data on all utilities customers in Qatar. All told, the utilities data include nearly 160,000 unique customers (i.e., structures on the grid). Along with spatial coordinates and other geographic markers, this file includes information on the type of customer (e.g., residence, government, or firm). In addition to this master file, I also draw on the landmarks data, which supplements the water and electricity data by providing more detailed information for coding a structure’s type of service or industry.

Recognizing the potential power of spatial planning, Qatar was an early-adopter of GIS technologies. Through spatial planning and social engineering, the new Qatari state could be deliberately designed to meet the regime’s needs. With state control over the provision of housing plots and construction grants, the government could essentially decide where citizens would live (Nagy 2006). And as foreign labor became instrumental to development, this control also extended to the location of worker camps and expatriate housing. Spatial planning helped to erect (quite literally) concrete divisions among communities. Walled behind state-located villas and firm-controlled compounds, Qatari society has been effectively and wholly segregated.

[INSERT FIGURES 2-4 ABOUT HERE]

The effects of this spatial policy can be readily seen throughout Qatar, as evident in Figures 2-4. These three figures spatially map the density of different housing types across the country. Roughly, we can break down the population into three general categories: native citizens, high-skill (largely Western) expats, and low-skill (largely Asian) migrants. These three communities map onto distinct housing types. Villas are allotted to citizens, flats (i.e., apartments) to high-skill expats, and camps for low-skill migrant workers. When we compare the distributions of these three housing types, we can see the clear effects of sorting on communities. Citizens are the most widely spread group throughout the country, while expats are almost entirely concentrated in one area in the North-East part of Doha. The density plot of camps suggests a different distribution altogether for migrant workers. While not as uniformly distributed as villas, camps are much more spread out than flats, reflecting the demand for workers across Qatar. In the Appendix, I draw on tools from spatial statistics to formally show this segregation across a series of figures, plotting Ripley’s K-function for different housing types.

Without gainsaying the broader normative and welfare implications of this policy (a point to which I return later), this communal segregation plays a crucial role in my analysis. I exploit this spatial sorting to evaluate my theory, investigating whether benefits and repression are disproportionately located in areas that represent the greatest threat of sabotage. For the regime, this policy choice operates at a local level across different zones. The state of Qatar is divided into 87 distinct zones, most of which are found in or near the capital city of Doha. Zones are not only simple administrative units, but are instrumental to the regime’s spatial planning and segregation policies. Different zones have been planned to house specific groups or communities, depending on nation-
ality and socio-economic position (Nagy 2006; Gardner 2012). Of course, complete segregation is impossible, and some zones are more starkly segregated than others. I leverage this variation to evaluate the degree to which sabotage threat translates into targeted benefits for (some) marginalized communities in Qatar.

Using the GIS files described above, I begin my analysis by coding each observation according to household type or service. I then group these coded observations by zone to create a series of count variables. For dependent variables, I construct two measures that represent benefits: *Utilities* and *General Services*. The *Utilities* variable is a composite measure of basic utilities, like drainage and toilets. Good drainage and access to waste services is critical for workers living in communal camps. In Dubai, some of the most severe protests came out of disgruntled workers frustrated with poor drainage and unhygienic living conditions (Krane 2009). The *General Services* variable is a category defined within the government GIS files and comprises various transport, shipping, and other services.\(^{22}\) Given the migrant’s transnational status, these services are a crucial link home, connecting the migrant to his or her family and allowing for easier transmission of goods. Finally, I have also coded a measure for repression, which I call *Security Installations*. For this variable, I simply use the GIS files’ coding for military barracks and police stations.

Each of these outcome measures are count variables at the zone-level. These counts can vary widely across Qatar. Given the spatial nature of the data, rather than plot these variables as simple histograms, I have created a series of heat maps (Figures 5-7) for each outcome measure. *General Services* and *Utilities* appear to have similar distributions, with the former slightly more spread throughout the country, and the latter more concentrated around Doha. The *Security Installations* have a much different distribution, found predominantly in the North-Western side of the country, partly reflecting the need for military bases on Qatar’s border with Saudi Arabia.

I also use these data to code a series of independent variables, which operationalize the threat of sabotage. Recall that the first component of sabotage threat is risk. In capturing risk, I construct a variable that represents the relative share of migrant workers in a given zone. This variable is called *Camps*, and is a ratio of migrant camps to the total number of residences in that zone. A ratio captures the relative dominance of workers in an area. As workers come to dominate a given zone, they represent an increasing threat. If sabotage depends on reaching some critical mass, then risk should be increasing in the relative presence of migrants. As with the dependent variables above, I have created a heat map for this *Camps* measure. Consistent with the density plot from before, we see a non-uniform distribution of camps in Figure 8. The intensity of camps clearly varies across

\(^{22}\)Note that some of these services may be provided, at least nominally, by the private sector. I say nominally because the reality in Qatar is much more complicated in practice. First, there is a real question as to the degree to which the public and private sector actually represent distinct sectors. Across many industries, especially those crucial to state development (e.g., energy), the state either owns firms outright or holds major/controlling shares. Second, even if firms are wholly private, their location is not the product of market forces. Rather, firm location is a function of state planning, with the government agencies explicitly allocating plots of land for private use. Central planning gives the regime incredible power over the targeting of goods and services, even those provided by the private sector.
Qatar, with some zones being majority-migrants and others only having a small share.23

[INSERT FIGURE 8 ABOUT HERE]

As for the potential cost of sabotage, I consider a couple of measures. The most direct and costly target of sabotage would be government administrative buildings and other state-owned installations. Public opposition around these buildings or industries is a major risk to the regime and the reputation it has cultivated. In addition to government installations, the regime should be especially concerned with sabotage in areas where media and international audiences can easily observe them. Acts of sabotage cannot be easily ignored or hidden from the public when camps are located near media or foreign embassies, making these public attacks even more costly for the regime. The count variable \textit{Government} captures these public concerns, summing the number of (non-security) government buildings, media and any foreign embassies in a given zone.

While perhaps less direct of a challenge, attacks on the private sector are also integral to my theory of sabotage. To capture this threat, I construct a count of the total number of firms in each zone. This variable, called \textit{Firms}, is a simple but coarse measure of the potential cost to production from sabotage in a given zone. We can think of this count as roughly capturing economic production or activity across zones. All things being equal, acts of sabotage in highly productive areas should have a greater cost, interrupting more economic activity than in other, less productive areas.

Finally, in addition to the independent variables described above, I also include a control for \textit{Population Density} by zone, which comes from Qatar’s 2010 Census. The measure divides each zone’s population by its area in kilometers squared. Population density is a crucial factor in state planning, particularly in Qatar where some areas vary widely in population size and area. Few distributive goods are truly non-rivalrous, making such density measures a crucial tool for urban planners looking to avoid shortages or congestion effects. Descriptive statistics for all of the variables used in this analysis can be found in Table 3.

[INSERT TABLE 3 ABOUT HERE]

\textbf{Analysis and Results}

Having described the data, I now discuss my estimation strategy. Normal OLS is generally considered inappropriate when the outcome measures are count variables. Moreover, the distribution of these services across Qatar appears significantly skewed and possibly over-dispersed. To model this over-dispersion, I estimate a series of Negative Binomial models, regressing the various goods and services on sabotage threat.24 For each of the three outcome measures described above (i.e.,

23Note that this measure suffers from one major weakness: it is a count of camps and not workers. As with the other residences, the water and electricity data identify households, not individuals. As such, we should be cautious about interpreting the net welfare effects since we do not have a real per capita measure.

24As a robustness test, I have also replicated these results with a standard Poisson Regression and Zero-Inflated Negative Binomial. The results are qualitatively the same.
Utilities, General Services and Security Installations) I estimate the following two specifications:

\[
\text{Count} = \alpha + \beta_1 \text{Camps} + \beta_2 \text{Government} + \beta_3 \text{Camps} \times \text{Government} + \beta_4 \text{Controls} + \theta + \epsilon \\
\text{Count} = \alpha + \beta_1 \text{Camps} + \beta_2 \text{Firms} + \beta_3 \text{Camps} \times \text{Firms} + \beta_4 \text{Controls} + \theta + \epsilon
\]

The \text{Camps} variable represents the risk of sabotage, while the \text{Government} and \text{Firms} variables capture the potential costs. The interaction between risk and costs (i.e., \text{Camps} \times \text{Government} and \text{Camps} \times \text{Firms}) represent the threat of sabotage in a given area. For each model, this interaction term is the main quantity of interest and we should expect it to be positive (i.e., \(\beta_3 > 0 \)). In addition to these two specifications, I also estimate models with and without Municipality fixed effects.\(^{25}\) Qatar’s 87 zones are aggregated into seven broader Municipalities. Along with the control for \text{Population Density}, these Municipality fixed effects should help capture some of the underlying demand and planning considerations that drive the provision of goods and services across Qatar.

Table 4 reports the estimates from the Negative Binomial Models when using the \text{Government} variable. The dependent variable in the first two columns is \text{Utilities}, the next two are \text{General Services}, and the last two are \text{Security Locations}. We see that the coefficient on \text{Camps} is negative across all outcome variables, but the significance varies considerably. The coefficient on the \text{Government} measure is positive and highly significant, at least for the \text{Utilities} and \text{General Services}. Of greatest interest is the interaction term \text{Camps} \times \text{Government}. As the theory predicts, the coefficient is positive and highly significant across all specifications. The negative coefficient on \text{Camps} suggests that when the potential cost of sabotage is relatively low (i.e., there are no media or government targets in the area), increasing the number of camps reduces benefits (either measured as \text{Utilities} or \text{General Services}). However, conditional on government or media in the area, increasing the number of camps results in more benefits and security. All told, these results provide suggestive evidence consistent with both the conventional wisdom and my theory of sabotage. Although migrant-dominant areas generally receive fewer benefits, increasing their proximity or access to government buildings and media makes it more likely that these areas will receive more services, both beneficial and potentially repressive.

Table 5 reports the results when using the \text{Firms} variable as a measure of potential cost. The coefficients on the \text{Camps} and \text{Firms} variables are broadly consistent with the previous results and our expectations. All things being equal, benefits are decreasing in areas with a lot of migrants (i.e., a greater density of \text{Camps}), but increasing where there is significant economic production (i.e., a

\(^{25}\)The inclusion of Municipality fixed effects helps further control for unobservables, particularly those that may be associated with different regions across the country. If the results were being driven by some particular Municipality (e.g., the capital of Doha or the gas-rich Ras Laffan), then we would expect the fixed effects results to differ markedly.
greater density of Firms). These negative and positive associations, respectively, also correspond to the earlier results when using Government as a measure of cost. Yet despite these similarities, we immediately see a major difference when we consider the interaction term for Camps x Firms. Contrary to the theory’s prediction, the interaction term is negative and highly significant. This result implies that conditional on the number of Firms in an area, increasing the prevalence of Camps actually reduces goods and services in that zone. Not only does this result run counter to my theory of sabotage, but also the findings from the previous set of estimations. It is not clear why increasing the share of camps actually produces fewer benefits (or security) in economically dense areas. Although this negative result is less robust than the positive estimates above, it remains troubling for the theory.

There are a couple of possible explanations for this surprising result. The first, and most obvious: the theory is simply wrong. The threat of sabotage— at least, as it has been operationalized here— may not provide the marginalized with any bargaining power to extract distributive concessions. If the theory were wrong, however, we might have expected to find a similarly negative relationship in the previous table as well. Instead, we find that one interaction term is positive and the other negative: one provides support for the theory, while the other contradicts it. But suppose the negative result is correct, it is not easy to even explain such a relationship. In falsifying the theory, we may have suspected a null result, which would suggest that the regime makes no distinction between camps across areas of varying economic productivity. The negative result instead implies that camps in economically dense areas receive fewer goods and services. Even if the autocrat does not fear sabotage in these areas, it is not clear why he would withdraw benefits or security.

Alternatively, this result may simply reflect the coarse, noisy measurement of the Firms variable. This measure is meant to capture economic productivity, with the assumption that sabotage would produce greater costs in areas with more firms. Such an assumption, however, may be problematic, as it treats all firms as if they are the same. Firms differ in various ways, from their size, internal organization, and workforce. These differences should have major implications for the relative threat (and potential cost) of sabotage. It may be the case that costly and effective sabotage depends on particular firm features, which make some firms more or less susceptible to sabotage.

Ideally, we could tease out these differences with firm-level data. Unfortunately, the GIS files do not provide information on such covariates. What we can determine, however, is the respective sector or industry of these firms. While not a perfect proxy for the many differences between firms, this sectoral dimension is at least a good place to start unpacking the counterintuitive result from above. The cleanest and perhaps most obvious division is that between manufacturing and non-manufacturing firms in Qatar.

This breakdown has both theoretical and empirical advantages. Returning to the theory, the costs of sabotage should be greater in areas where marginalized groups can organize, coordinate
and gain access to valuable targets. Collective action of this form often begins in the workplace, and may be easier in some industries than others. On the factory floor, workers can communicate and share grievances, and have ready access to the means of production. Workers in other sectors, like finance, tourism or domestic services, have far less opportunity to interact with their co-workers. For Qatar, in particular, the difference between factory and non-factory workers should be even greater. Factory workers are perhaps the most likely group to actually live near their place work in Qatar. Zoning laws have pushed migrants and factories outside of the main population centers, creating “bachelor cities” (Gardner 2012, 3), which may have inadvertently made sabotage a greater threat. Workers in other industries often have to take a company bus or public transportation to their workplace. This is especially true for workers in Doha, who often have to travel across the city, moving across many zones. For these workers, living in an economically dense area may not represent their capacity to target their own firms or commit sabotage, introducing significant noise in the Firms variable.

Using sectoral codings, we can now better represent the production profile of a given area. Rather than just aggregate firms within a zone, we can capture how different zones more or less depend on distinct industries or represent particular sectors of the economy. To do this, I first code each firm as either manufacturing or non-manufacturing. For each zone, I then create two variables: Manufacturing and Non-Manufacturing, which are simply the shares of each industry in that zone. These shares or ratios are computed by dividing the number of manufacturing and non-manufacturing firms by the Firms variable.

[INSERT TABLES 6-7 ABOUT HERE]

Using these variables, I then re-estimate the models from before, now considering how the threat of sabotage may work through different sectors. If sabotage threat operates through a specific sector, we should expect the interaction term between Camps and that sector to be positive. As Tables 6 reveals, when we include the Manufacturing variable, the results closely resemble those from Table 4. Along with a negative coefficient on Camps (significant in three of the six models), the interaction term Camps x Manufacturing is positive and significant across all outcome measures and specifications. This result is broadly consistent with the theory: conditional on manufacturing, more camps leads to an increase in benefits and repression.

We see a very different trend in Table 7, which instead uses the Non-Manufacturing variable. The Camps variable is largely insignificant (and even positive for some specifications), while the Camps x Non-Manufacturing interaction term is mostly negative and significant. This negative coefficient effectively recovers the results found for the raw counts measure of Firms, possibly helping to explain this surprising finding. Comparing the distinct results from Tables 6 and 7, we see strong sectoral differences. These results suggest that if the threat to economic productivity matters—such that it raises the potential cost of sabotage—this effect is most pronounced in manufacturing areas.
More generally, the results from Tables 4 and 6, which use Government and Manufacturing to proxy for potential costs, offer suggestive evidence for my theory. The interaction terms for these variables have qualitatively similar effects on spatial planning and distributive choices in Qatar. We can see this relationship graphically by using these estimates to plot the expected counts. Figures 9-14 use the coefficient estimates from the Negative Binomial regressions to estimate the effect of Camps on each of the three outcome measures, conditional on Government and Manufacturing. In each figure, there are three panels, representing a low, medium and high value for the modifying variable. Given the non-linear structure of the Negative Binomial Model, we have to fix the other variables, including the modifier, to evaluate the marginal effect of our variable of interest (i.e., Camps). I use the coefficient estimates from Tables 4 and 6, while setting the Population Density at its mean value (and dropping the Municipality fixed effects). I then plot the effect of Camps across the three different values of the modifying variable.

Figures 9-11 show these plots for Government. For each outcome measure, we see that Camps has a flat or negative slope when Government is low (i.e., the left panel). The slope begins to increase for a moderate value (i.e., middle panel), and finally becomes clearly positive for high values of the Government variable (i.e., right panel). Although the plots look different, we see a similar trend overall in Figures 12-14, which use the Manufacturing variable as the modifier.

[INSERT FIGURES 9-14 ABOUT HERE]

The marginal effects plots illustrate how conditional on access or proximity to high value targets (like government buildings or factories), increasing the number of camps results in greater benefits and repression. This result is especially surprising since the Manufacturing and Government variables only correlate 0.23. Such a small correlation suggests that these variables do not simply represent the same zones, or that areas with a lot of manufacturing also have a disproportionate share of government buildings, media and embassies.

While broadly consistent with my theory, we should be cautious about reading too much into these findings. These data provide suggestive evidence of targeting in Qatar, but they present several challenges. The data are not time-serial, limiting our tests and making it impossible to evaluate the effect of changing levels in threat (e.g., increases to camp density or time-varying production profile) on distributive policies. These spatial data are novel and provide suggestive evidence consistent with my theory, but they represent associations and cannot speak to causality. In particular, we may worry about the causal direction of targeting, with camps actually being targeted or located in areas with fewer goods. Without time-serial data, it is difficult to really answer this question of timing. However, given the sticky and path-dependent nature of housing policy (which actually goes back decades in Qatar), this problem of reverse causality is less worrisome.

Perhaps most significantly though, these tests cannot fully speak to the broader external pressures calling on Qatar to improve its treatment of migrant workers. The regime’s policies are not

26Since these plots are expected counts— and are thus constrained above zero— the confidence intervals do not indicate significance, as they would for a marginal effects plot of OLS estimates.
driven solely by the threat of sabotage, and must also reflect these pressures. That being said, if these targeted goods were just a response to such pressures, the interaction terms should not be significant. Instead, the results suggest that the regime appears to differentiate among the marginalized, disproportionately locating benefits (and repression) in those areas representing the greatest risk of sabotage. Moreover, these benefits are relatively modest. They do not address the deeper inequities that motivate international activists or human rights groups (e.g., immigration reform).

Finally, it is worth considering the broader normative and welfare implications of these results. However suggestive, if we accept the general findings—that sabotage threat brings some additional benefits for particular groups—we may be tempted to conclude that life under authoritarian rule, even for the marginalized, may not be so bad after all. Drawing any such conclusion is problematic. The net welfare effects of these policies is more complicated than these results would suggest. On the one hand, some of these marginalized communities receive targeted goods and services, which have long been seen as exclusive benefits for elites and other supporters. In this sense, migrant quality of life may be better than some of the harshest critics contend. On the other hand, these benefits also come with an additional security presence. Targeted benefits are only part of the regime’s strategy. Preventing sabotage begins by providing marginalized groups with benefits to make them feel invested in the regime and its survival. Without some incentives to work, the most passive forms of obstruction could become rampant. At the same time though, if destructive sabotage occurs, the regime must be ready to respond quickly. When speaking to the broader welfare implications, the value of these benefits must be weighed against these additional security installations. And all of this says nothing about the quality of life for those marginalized groups without a credible threat of sabotage. For such groups, the standard narrative remains apt: their structural vulnerability leaves little recourse for extracting benefits from the state.

6 Conclusion

I began this paper by highlighting some of the more extravagant spending projects that have recently targeted migrant workers in Qatar. Ostensibly, these projects represent a profound departure from traditional narratives on the treatment of marginalized groups under authoritarian regimes, in general, and in Qatar, in particular. Over the course of this paper, I have tried to show how this distributive targeting derives from a shrewd political economic logic of survival. Until recently, such targeted benefits were hardly necessary. Contained within worker ghettos, the regime felt secure from these marginalized groups and any challenge they posed. But as this population has grown rapidly over the past decade—at a time, when Qatar’s neighbors and regional rivals have seen unmet demands result in violence and sabotage—the regime has been forced to offer greater concessions, targeting the marginalized with more and better goods.

The threat of sabotage provides even the most marginalized groups a means to resist. By withholding their services or actively attacking key infrastructure, marginalized groups can undermine
the political economy of the state, exacting a high cost on the regime and its supporters. This threat, when credible and costly, gives these groups a bargaining power missing from more traditional political economic models of authoritarianism. Ultimately, I argue that the provision of targeted goods to marginalized groups is not the choice of some benevolent dictator. Rather, it represents shrewd, pragmatic policymaking and a response to this underlying challenge. And while appeasement is unpopular, it may be necessary to prevent sabotage.

However informative the Qatari case, we have to be cautious in generalizing beyond it. After all, there are few regimes in the world that enjoy the same advantages or face the same challenges as Qatar. Nonetheless, the Qatari case is instructive for both theoretical reasons and practical considerations. While Qatar may be an extreme case, it can still help reveal how autocrats negotiate challenges and make distributive choices. In the past few years, Qatar’s development planning has suffered from various delays, bottlenecks and an over-worked construction industry. As Qatar has ramped up construction in anticipation of the 2022 World Cup, labor supplies and other resources have proven scarce, and the regime has been forced to curb spending and cancel projects. Even without traditional budget constraints, the regime must still prioritize spending and investment. Under these distinct constraints, the Qatari case reveals how rulers may conceptualize threat and respond proactively. The regime’s use of multiple policy instruments—some cooptic and some repressive—represents a more general story of how autocrats respond to threats by differentiating among groups. Qatar may just be a special case, where the regime uses a particular mix of policies that would otherwise be prohibitively expensive or infeasible for most regimes. Sabotage is a threat wherever marginalized groups are crucial to economic production. And as this threat grows, we should expect regimes to respond with targeted benefits and repression.

The Qatari case also has some immediate lessons for other autocratic regimes, albeit a select group: the Gulf states. Qatar resembles its neighbors across various dimensions. In terms of resources, Qatar may lead the region in per capita terms, but the UAE and Kuwait are relatively similar. At the same time though, the Qatari economy lags behind other states in some key sectors. In recent years, Qatar has made efforts to rapidly diversify its economy towards tourism and finance, a process begun decades earlier in resource-poor Dubai and Bahrain. Most importantly though, the growing dependence on foreign labor extends beyond Qatar to the entire region. None of the Gulf states are immune to this threat, and most have already seen major acts of sabotage. Qatar’s late but rapid development allowed it to take more deliberate, preventive measures to defuse this threat. The regime not only exploited new technologies, but also had the advantage of seeing earlier policy failures in neighboring countries. Part-cooptic and part-repressive, Qatar’s policies may help us better understand the Gulf’s future as it responds to the threat of sabotage. With migration critical to the Gulf’s continued development, this challenge is not likely to abate anytime soon. As the threat grows, these regimes must find new strategies for resolving their tensions and maintaining production. Repression alone will not suffice. And for better or worse, Qatar may just be the model for the rest of the region.
Appendix

A Test of Spatial Clustering and Segregation in Qatar

Using methods from spatial statistics, we can test for segregation with Ripley’s K-function. The K-function is a formal measure of clustering, which estimates the number of points within a set distance from a given point (Ripley 1988). Segregation occurs when this clustering is biased according to type. With respect to Qatar, we should expect that given some particular camp, and having specified a distance measure, there will be more camps clustered in that area than either flats or villas. Figures 15 and 16 plot the K-function across various radii, r, for clustering of camps and villas, respectively. In both figures, the radius is on the x-axis, and there are two functions plotted: a dotted red-line that represents the clustering of a random (Poisson) stationary point process, and a solid black-line for the estimated K-function.

[INSERT FIGURES 15-16 ABOUT HERE]

The estimated K-function for the camps plot (Figure 15), differs significantly from the theoretical Poisson-generated line, suggesting significant clustering across all radii. The difference between the villas K-function (Figure 16) and the base-line are far less obvious, and even indistinguishable for a small radius. Comparing these estimated functions to each other, we see that the slope of the K-function for camps is much steeper, especially at a smaller radius, which indicates strong and significant clustering of camps at local levels. The K-function for villas really only begins to increase significantly once the radius gets much larger, which is not surprising given how small Qatar is and the simple fact that increasing the distance measure means more area (and points) will be included. The local difference, however, clearly indicates a significant clustering of camps.
Table 1: Migrants as a Share of Population and Workforce Across the Gulf

<table>
<thead>
<tr>
<th>Country</th>
<th>Population Size</th>
<th>% Migrant (Population)</th>
<th>% Migrant (Workforce)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahrain</td>
<td>1,234,571</td>
<td>54.0</td>
<td>74.8</td>
</tr>
<tr>
<td>Kuwait</td>
<td>3,965,144</td>
<td>68.7</td>
<td>82.9</td>
</tr>
<tr>
<td>Oman</td>
<td>3,855,206</td>
<td>43.7</td>
<td>79.9</td>
</tr>
<tr>
<td>Qatar</td>
<td>1,699,435</td>
<td>85.7</td>
<td>93.9</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>29,994,272</td>
<td>32.4</td>
<td>56.0</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>8,264,070</td>
<td>88.5</td>
<td>92.9</td>
</tr>
</tbody>
</table>

Note: Table reproduced with permission from the Gulf Labor Markets and Migration website. These estimates have been taken from individual country data from 2010 to 2014. See GLMM Website for updated data and country years.

Table 2: Foreign Workers Across Economic Sectors in Qatar

<table>
<thead>
<tr>
<th>Sector</th>
<th>Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture and fishing</td>
<td>17,070</td>
</tr>
<tr>
<td>Mining and quarrying</td>
<td>80,654</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>99,871</td>
</tr>
<tr>
<td>Electricity, gas, water and waste management</td>
<td>3,310</td>
</tr>
<tr>
<td>Construction</td>
<td>505,721</td>
</tr>
<tr>
<td>Motor vehicle sales and repairs</td>
<td>140,940</td>
</tr>
<tr>
<td>Transportation and storage</td>
<td>33,249</td>
</tr>
<tr>
<td>Accommodation and food service activities</td>
<td>28,961</td>
</tr>
<tr>
<td>Information and communication</td>
<td>6,877</td>
</tr>
<tr>
<td>Financial and insurance activities</td>
<td>7,911</td>
</tr>
<tr>
<td>Real estate activities</td>
<td>8,132</td>
</tr>
<tr>
<td>Professional, scientific and technical activities</td>
<td>20,067</td>
</tr>
<tr>
<td>Administrative and support service activities</td>
<td>38,795</td>
</tr>
<tr>
<td>Public administration and defence</td>
<td>30,124</td>
</tr>
<tr>
<td>Education</td>
<td>18,171</td>
</tr>
<tr>
<td>Human health and social work activities</td>
<td>15,570</td>
</tr>
<tr>
<td>Arts, entertainment and recreation</td>
<td>4,350</td>
</tr>
<tr>
<td>Other service activities</td>
<td>5,307</td>
</tr>
<tr>
<td>Activities of households as employers</td>
<td>132,401</td>
</tr>
</tbody>
</table>

Note: Qatar Statistics Authority, Census 2010.
Table 3: Descriptive Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camps</td>
<td>0.037</td>
<td>0.153</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Utilities</td>
<td>4.114</td>
<td>5.084</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>General Services</td>
<td>2.659</td>
<td>3.529</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Security</td>
<td>0.239</td>
<td>0.547</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Government</td>
<td>13.898</td>
<td>16.004</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Firms</td>
<td>14.182</td>
<td>75.507</td>
<td>0</td>
<td>696</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.29</td>
<td>0.385</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Non-Manufacturing</td>
<td>0.357</td>
<td>0.415</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Population Density</td>
<td>4,886</td>
<td>8,087</td>
<td>0</td>
<td>43,094</td>
</tr>
</tbody>
</table>

Note: The variables for Camps, Manufacturing and Non-Manufacturing are proportions. The Utilities, General Services, Security, Government, and Firms are all counts. The Population Density measure is population divided by zone size (in km^2).
Table 4: Sabotage Threat as Proximity to Government Buildings

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Basic Utilities</th>
<th>Basic Utilities</th>
<th>General Services</th>
<th>General Services</th>
<th>Security</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Camps</td>
<td>-5.802^{**}</td>
<td>-5.644^*</td>
<td>-2.169^{***}</td>
<td>-0.634</td>
<td>-2.813^*</td>
<td>-3.734</td>
</tr>
<tr>
<td></td>
<td>(2.270)</td>
<td>(2.948)</td>
<td>(0.609)</td>
<td>(0.883)</td>
<td>(1.649)</td>
<td>(2.555)</td>
</tr>
<tr>
<td>Government</td>
<td>0.036^{***}</td>
<td>0.045^{***}</td>
<td>0.032^{***}</td>
<td>0.048^{***}</td>
<td>0.014</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.010)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Camps x Government</td>
<td>0.440^{***}</td>
<td>0.436^{**}</td>
<td>0.284^{***}</td>
<td>0.189^{***}</td>
<td>0.409^{***}</td>
<td>0.467^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td>(0.181)</td>
<td>(0.053)</td>
<td>(0.065)</td>
<td>(0.125)</td>
<td>(0.180)</td>
</tr>
<tr>
<td>Population Density</td>
<td>0.00004^{***}</td>
<td>0.00003^{***}</td>
<td>0.00003^{***}</td>
<td>0.00002</td>
<td>-0.0001</td>
<td>-0.00003</td>
</tr>
<tr>
<td></td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.476^{***}</td>
<td>0.353^{**}</td>
<td>0.109</td>
<td>-1.113^{***}</td>
<td>-1.621^{***}</td>
<td>-17.281^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.178)</td>
<td>(0.145)</td>
<td>(0.181)</td>
<td>(0.169)</td>
<td>(0.477)</td>
<td>(1.411)</td>
</tr>
</tbody>
</table>

Municipality FEs: Yes

Observations: 80
Log Likelihood: -183.210
\(\theta\): 2.866***
AIC: 376.421

Note: Negative binomial regression with robust standard errors; *p<0.1; **p<0.05; ***p<0.01
Table 5: Sabotage Threat as Proximity to Firms

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Basic Utilities</th>
<th>Basic Utilities</th>
<th>General Services</th>
<th>General Services</th>
<th>Security</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Camps</td>
<td>−4.250***</td>
<td>−4.082***</td>
<td>−0.430</td>
<td>−0.930**</td>
<td>0.511</td>
<td>−0.099</td>
</tr>
<tr>
<td></td>
<td>(1.087)</td>
<td>(1.105)</td>
<td>(0.461)</td>
<td>(0.387)</td>
<td>(1.023)</td>
<td>(0.847)</td>
</tr>
<tr>
<td>Firms</td>
<td>0.015***</td>
<td>0.017***</td>
<td>0.015***</td>
<td>0.016***</td>
<td>0.012**</td>
<td>−0.001</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Camps x Firms</td>
<td>−0.013*</td>
<td>−0.015*</td>
<td>−0.016***</td>
<td>−0.018***</td>
<td>−0.012*</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Population Density</td>
<td>0.00000</td>
<td>0.00002*</td>
<td>−0.00000</td>
<td>0.00001</td>
<td>−0.0001</td>
<td>−0.00003</td>
</tr>
<tr>
<td></td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.386***</td>
<td>1.350***</td>
<td>0.848***</td>
<td>−0.034***</td>
<td>−1.275***</td>
<td>−17.296***</td>
</tr>
<tr>
<td></td>
<td>(0.169)</td>
<td>(0.011)</td>
<td>(0.158)</td>
<td>(0.009)</td>
<td>(0.330)</td>
<td>(1.159)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Municipality FEs</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>−203.903</td>
<td>−196.415</td>
<td>−171.097</td>
<td>−168.715</td>
<td>−44.631</td>
<td>−39.580</td>
</tr>
<tr>
<td>(\theta)</td>
<td>1.130***</td>
<td>1.505***</td>
<td>1.279***</td>
<td>1.422***</td>
<td>1,335.311</td>
<td>3,302.931</td>
</tr>
<tr>
<td>AIC</td>
<td>417.805</td>
<td>414.831</td>
<td>352.193</td>
<td>359.429</td>
<td>99.262</td>
<td>101.161</td>
</tr>
</tbody>
</table>

Note: Negative binomial regression with robust standard errors; *p<0.1; **p<0.05; ***p<0.01
Table 6: Sabotage Threat in Manufacturing Areas

<table>
<thead>
<tr>
<th></th>
<th>Basic Utilities</th>
<th>Basic Utilities</th>
<th>General Services</th>
<th>General Services</th>
<th>Security</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Camps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5.575***</td>
<td>-6.020***</td>
<td>-0.388</td>
<td>-0.786***</td>
<td>0.393</td>
<td>-0.349</td>
</tr>
<tr>
<td></td>
<td>(1.632)</td>
<td>(1.919)</td>
<td>(0.311)</td>
<td>(0.290)</td>
<td>(1.004)</td>
<td>(0.879)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>1.044***</td>
<td>0.814***</td>
<td>0.834***</td>
<td>0.813***</td>
<td>0.537</td>
<td>0.477</td>
</tr>
<tr>
<td></td>
<td>(0.274)</td>
<td>(0.255)</td>
<td>(0.291)</td>
<td>(0.290)</td>
<td>(0.580)</td>
<td>(0.602)</td>
</tr>
<tr>
<td>Camps x Manufacturing</td>
<td>6.528***</td>
<td>7.432***</td>
<td>2.348***</td>
<td>2.787***</td>
<td>3.221**</td>
<td>4.462***</td>
</tr>
<tr>
<td></td>
<td>(1.668)</td>
<td>(1.963)</td>
<td>(0.543)</td>
<td>(0.552)</td>
<td>(1.550)</td>
<td>(1.394)</td>
</tr>
<tr>
<td>Population Density</td>
<td>-0.00000</td>
<td>0.00001</td>
<td>-0.00000</td>
<td>0.00000</td>
<td>-0.0001</td>
<td>-0.00003</td>
</tr>
<tr>
<td></td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.00001)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.118***</td>
<td>0.570**</td>
<td>0.673***</td>
<td>-0.814***</td>
<td>-1.403***</td>
<td>-17.775***</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.254)</td>
<td>(0.154)</td>
<td>(0.290)</td>
<td>(0.404)</td>
<td>(0.835)</td>
</tr>
<tr>
<td>Municipality FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>θ</td>
<td>1.311***</td>
<td>1.747***</td>
<td>1.269***</td>
<td>1.400***</td>
<td>1,438.034</td>
<td>3,221.517</td>
</tr>
<tr>
<td>AIC</td>
<td>409.428</td>
<td>408.800</td>
<td>351.871</td>
<td>359.795</td>
<td>98.826</td>
<td>100.431</td>
</tr>
</tbody>
</table>

*Note: Negative binomial regression with robust standard errors; *p<0.1; **p<0.05; ***p<0.01*
Table 7: Sabotage Threat in Non-Manufacturing Areas

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Basic Utilities (1)</th>
<th>Basic Utilities (2)</th>
<th>General Services (3)</th>
<th>General Services (4)</th>
<th>Security (5)</th>
<th>Security (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camps</td>
<td>0.956 (0.895)</td>
<td>1.095 (0.959)</td>
<td>1.791** (0.905)</td>
<td>1.818* (0.996)</td>
<td>1.532 (1.153)</td>
<td>1.282 (1.513)</td>
</tr>
<tr>
<td>Non-Manufacturing</td>
<td>0.373 (0.236)</td>
<td>0.257 (0.251)</td>
<td>0.397 (0.243)</td>
<td>0.349 (0.262)</td>
<td>-0.610 (0.545)</td>
<td>-0.943 (0.732)</td>
</tr>
<tr>
<td>Camps x Non-Manufacturing</td>
<td>-8.933*** (2.289)</td>
<td>-9.576*** (2.615)</td>
<td>-2.277** (1.123)</td>
<td>-3.002** (1.369)</td>
<td>1.368 (1.430)</td>
<td>0.232 (2.122)</td>
</tr>
<tr>
<td>Population Density</td>
<td>0.000001 (0.00001)</td>
<td>0.000003** (0.00001)</td>
<td>0.000001 (0.00001)</td>
<td>0.000002 (0.00001)</td>
<td>-0.0001 (0.0001)</td>
<td>-0.00001 (0.00003)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.345*** (0.190)</td>
<td>1.382*** (0.002)</td>
<td>0.780*** (0.188)</td>
<td>-0.003 (0.002)</td>
<td>-1.161*** (0.357)</td>
<td>-17.302*** (0.850)</td>
</tr>
<tr>
<td>Municipality FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Observations 80 80 80 80 80 80
θ 1.008*** 1.273*** 1.058*** 1.126*** 1.828 2.774-573
AIC 425.143 423.824 359.982 368.432 102.732 105.555

Note: Negative binomial regression with robust standard errors; *$p<0.1$; **$p<0.05$; ***$p<0.01$
Figure 1: Percent Foreign Population in the Gulf (1970-2010)

Figure 2: The Density of Villas Across Qatar
Figure 3: The Density of Flats Across Qatar

Figure 4: The Density of Camps Across Qatar
Figure 5: A Heat Map of Utilities Across Zones

Figure 6: A Heat Map of General Services Across Zones
Figure 9: The Effect of Camps on Utilities, Conditional on Government

Figure 10: The Effect of Camps on General Services, Conditional on Government
Figure 11: The Effect of Camps on Security, Conditional on Government

Figure 12: The Effect of Camps on Utilities, Conditional on Manufacturing
Figure 13: The Effect of Camps on General Services, Conditional on Manufacturing

Figure 14: The Effect of Camps on Security, Conditional on Manufacturing
Figure 15: Clustering of Camps (Around a Camp)

Figure 16: Clustering of Villas (Around a Camp)
References

Amnesty International. 2014. No Extra Time: How Qatar is Still Failing on Workers’ Rights Ahead of the World Cup.

Gandhi, Jennifer, and Adam Przeworski. 2007. “Authoritarian institutions and the survival of autocrats.” *Comparative Political Studies*.

Geddes, Barbara. 1999. “What Do We Know About Democratization After Twenty Years?” *Annual Review of Political Science* 2, no. 1: 115-44.

