Facts

- The world has a growing problem: Plastic Waste

+8,3Bn
Since 1950 around 8.3 billion tonnes of plastics have been produced globally—HALF of which in the last 13 years alone!

348M
In 2017 348 million tonnes of plastic have been produced globally, with 64 million metric tonnes produced in Europe alone

+400Mt.
This corresponds to approx. 400 million tonnes in CO₂ emission per year

Source: Ritzau Bureau 18 April 2018 / Denmark’s Plastics Action Plan Political Agreement 1 Feb 2019
Facts

- *Plastic Waste: A Detriment to our environment*

+15T
According to UN and WWF 15 metric tonnes of plastics are entering our seas and oceans every minute

+8M
Corresponding to 5-13 million tonnes of plastic waste seep into our seas and oceans every year

11%
Around 11% of this plastic waste, stems from the maritime industry in the shape of fishing nets, trawls, ropes, and boxes

Source: Ritzau Bureau 18 April 2018 / Denmark's Plastics Action Plan Political Agreement 1 Feb 2019
Plastix is a manufacturer of Green Plastics specialized in recycling waste fishing nets, trawls and ropes into high quality raw plastics materials...

“Green Plastics”

Current capacity 12,000 Mt/Y with planned expansion to 30,000 Mt/Y

READY TO SCALE-UP

PLASTIX
Mission
We transform fishing nets, fibers and rigid plastic waste fractions into high quality plastics raw materials

Vision
We provide sustainable solutions for cleaner environments and cleaner oceans

We strive to extend our limits by becoming both a recycler and polymer producer for a true Circular Plastics Economy
WE WORK EVIDENCE BASED

More than +900 laboratory analysis in our database, growing day by day

PLASTIX SOLUTIONS

- HELP YOUR COMPANY INTEGRATE GREEN PLASTICS –

- HELP YOUR COMPANY DESIGN FOR RECYCLABILITY –

PLASTIX
All types of plastic are recyclable, theoretically!
(in actuality only the dark green squares are commercially viable)

<table>
<thead>
<tr>
<th>Material</th>
<th>ABS</th>
<th>PA6</th>
<th>PA66</th>
<th>PBT</th>
<th>PC</th>
<th>PC/ABS</th>
<th>LD PE</th>
<th>HD PE</th>
<th>PET</th>
<th>PMMA</th>
<th>POM</th>
<th>PP</th>
<th>PP co</th>
<th>PS</th>
<th>PVC-rigid</th>
<th>PVC-soft</th>
<th>SAN</th>
<th>TPE-PP/PE</th>
<th>TPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td></td>
</tr>
<tr>
<td>PA6</td>
<td></td>
</tr>
<tr>
<td>PA66</td>
<td></td>
</tr>
<tr>
<td>PBT</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td></td>
</tr>
<tr>
<td>PC/ABS</td>
<td></td>
</tr>
<tr>
<td>LD PE</td>
<td></td>
</tr>
<tr>
<td>HD PE</td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td></td>
</tr>
<tr>
<td>PMMA</td>
<td></td>
</tr>
<tr>
<td>POM</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td></td>
</tr>
<tr>
<td>PP co</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>PVC rigid</td>
<td></td>
</tr>
<tr>
<td>PVC soft</td>
<td></td>
</tr>
<tr>
<td>SAN</td>
<td></td>
</tr>
<tr>
<td>TPE-PP/PE</td>
<td></td>
</tr>
</tbody>
</table>

* **Primary fraction** defines the larger volume of material mixed into or added to the primary fraction

Secondary fraction defines minor volume of material mixed into or added to the primary fraction

- Compatible / mixable
- Acceptable / partly mixable
- Acceptable, if the secondary fraction is kept below 2%***
- Normally not acceptable
- Not Acceptable / not mixable

*** The secondary fraction, which can be added in these (yellow) blends will vary from case to case. In some cases, only 1% of the secondary fraction can be added, and in other cases, up to 5-10% can be added.
Four points for reflection

Design for Disassembly
- Modular products
- Reduce waste through reuse

Design for Recyclability
- Single type of polymer
- Marking & Tracking schemes

Design with Green Plastics

Design capture at End of Life
- Extended Producer Responsibility
- Return & Deposit schemes

Mandatory content

Legislation as an accelerator
SDG Accelerator Project
Imagine a fully circular plastic economy

- Managing the transition and developing the infrastructure will be key challenges

Only a collaboration with the entire value-chain, can shape a better tomorrow
The UN SDGs and the Circular “New Plastics” Economy will radically change the way we run our businesses...

RECYCLERS

must ensure the **highest quality standards** for recycled polymers that they put up for sale on the market.

CONVERTERS & BRAND OWNERS

should **maximise** their effort to design easily-recyclable plastics articles “License to Operate”.

WASTE MANAGERS

must ensure that plastics wastes are **collected separately** & that the different polymers are **sorted/homogenized**.

CONSUMERS

should be made aware of their responsibility in this endeavour to maintain the value of plastics material: the way they dispose plastics has a spill-over effect on all following steps in the value-chain.
THANK YOU FOR YOUR KIND ATTENTION

Q&A

2019 · Hans Axel Kristensen, CEO
Our Process

CIRCULAR DIALOGUE

INPUT LOGISTICS

USED NETS, ROPEs, POST-USE RIGID PLASTICS

INSPECTION & REGISTRATION

FRACTIONING & ROUGH CLEANING

EXTRUSION

WASHING, SEPARATION & DRYING

GREEN PLASTICS

CUTTING

OUTPUT LOGISTICS

ALL PROCESSES ARE QUALITY ASSURED BY PLASTIX’ LABORATORY
The Circular “New Plastics” Economy and the SDGs - An innovation agenda and a tremendous business opportunity

In 2015, 193 world leaders agreed to 17 goals for a better future for everyone. Guided by the goals, it is now up to all of us – governments, businesses, civil society, you and I – to work towards achieving a better future for people and planet. We begin today.

“The UN was not created to take mankind to heaven, but to save humanity from hell”

- Dag Hammerskjöld - Second UN Secretary-General
Imagine a fully circular plastic economy - Managing the transition and developing the infrastructure will be key challenges.

Only a collaboration with the entire value-chain can shape a better tomorrow.
Recyclers must aim to produce the highest quality & ensure stable supply (=stable input)

FROM OUR “GREEN PLASTIC” YOU CAN PRODUCE:
INJECTION MOULDING
EXTRUSION
BLOW MOULDING
ROTO MOULDING
FILM EXTRUSION
FIBERS
3D PRINTING

ADJUSTING TO YOUR NEEDS:
COLOURS
FLOW INDEX
E-MODULUS
UV STABILITY
IMPACT RESISTANCE
ETC.

...FOR INNOVATIVE SOLUTIONS
PLASTIX REDUCES CO$_2$ EMISSIONS UP TO 82% COMPARED TO VIRGIN PLASTICS

1 TON OCEANIX rHDPE OR rPPC USED MEANS 1.7 TONS CO$_2$ EMISSIONS SAVED IN THE WORLD

Source: PLASTIX' Life Cycle Assessment (LCA)
Our Ocean “Green Plastics” blending with single color pigments

“Green Plastics” is more than just black ...
Personal Care, Skin Care made from recycled fishing ropes
- Blow Moulding and Injection Moulding
Fibres made from recycled fishing ropes

Approx. 30-50 tex fibers - made from:
100% OceanIX rPPC and OceanIX rHDPE
(30 tex = 300 gram per 10km fiber)

2,2 dtex fibers - made from:
20% OceanIX rPPC
(2,2 dtex = 2,2 gram per 10km fiber)
ScanCom – DuraOcean Chair produced 100% from ocean waste
Ocean Collection, by Nanna and Jørgen Ditzel and Mater Design
The world's only marine plastic recycled Kayaks
Bench made from 100% recycled fishing nets
Circular Lamp - Design for disassembly and recyclability
Body Bike® OceanIX made from recycled fishing nets
The RUM (Re-Used Materials) Chair – made from ocean plastics
Facts

- **The world is waking up: Initiative & Partnerships**

 The plastification of our seas and oceans has created a global movement.

 Legislative framework through influencers as UN, McKinsey, Ellen McArthur Foundation, NGOs, and Foundations.

 We need a systemic shift towards a circular economy for plastic, in which plastic never becomes waste.

 If we do not rethink to recapture and recycle plastic waste for a sustainable future, we risk billions of tonnes of plastic in our oceans by 2050. More plastics than FISH by weight.

Growing momentum to tackle plastic waste ...

- China Ban on plastic import
- Media Campaign
- EU Plastics Strategy
- Policies to increase recycling and improve waste management
The UN SDGs and the Circular "New Plastics" Economy will radically change the way we run our businesses ...

RECYCLERS

must ensure the **highest quality standards** for recycled polymers that they put up for sale on the market.

CONVERTERS & BRAND OWNERS

should **maximise** their effort to design easily-recyclable plastics articles "License to Operate".

WASTE MANAGERS

must ensure that plastics wastes are **collected separately** & that the different polymers are **sorted/homogenized**.

CONSUMERS *should be made aware of their responsibility in this endeavour* to maintain the value of plastics material: the way they dispose plastics has a spill-over effect on all following steps in the value-chain.
Four points for reflection

- Design for Disassembly
 - Modular products
 - Reduce waste through reuse

- Design for Recyclability
 - Single type of polymer
 - Marking & Tracking schemes

- Design with Green Plastics
 - Mandatory content

- Design capture at End of Life
 - Extended Producer Responsibility
 - Return & Deposit schemes

Legislation as an accelerator