# Coal and India's Energy Future

#### **Ananth Chikkatur**

Belfer Center for Science & International Affairs Kennedy School of Government, Harvard University

ERG Colloquium, University of California, Berkeley October 17<sup>th</sup>, 2007

# Outline

- 1. Indian Energy Scenario and Challenges
- 2. Role of Coal in India
- 3. Challenges & Constraints in India's coal power sector
- 4. Technological decision-making and pathways
- 5. Policy suggestions and Enabling conditions
- 6. Way Forward

## 1.0 Total Primary Energy Supply



Source: Planning Commission

- About 30% of energy consumption is from biomass, dung, and waste
- Dominant energy source for rural and low-income population

## 1.1 TPES Comparison (2005)



Coal Oil Gas Nuclear Hydro Combust. Renew./Waste Others

|              |             | World | U.S. | China | India |
|--------------|-------------|-------|------|-------|-------|
| TPES         | mtoe        | 11434 | 2340 | 1717  | 537   |
| TPES/capita  | toe         | 1.78  | 7.89 | 1.32  | 0.49  |
| TPES/GDP-PPP | kgoe/2000\$ | 0.21  | 0.21 | 0.22  | 0.16  |

## **1.2 Sources of Electricity**

- Electricity is a key modern energy source
  - Critical for industrial growth
- Electricity is often equated with "energy"
  - Not valid in rural areas (490 million people w/o electricity)
- Coal dominates Indian electricity sector
  - Growth of electricity since 1970s driven by coal



#### Chikkatur (ERG colloquium)

### 1.3 Electricity Comparisons (2005)



Coal Petroleum Gas Nuclear Hydro Geothermal/Solar/Wind Combust. Renewables

|                         |     | World | U.S.  | China | India |
|-------------------------|-----|-------|-------|-------|-------|
| <b>Total Generation</b> | TWh | 18233 | 4268  | 2497  | 699   |
| Elec./GDP 2000\$        | kWh | 0.46  | 0.368 | 1.23  | 0.82  |
| Elec./Capita            | kWh | 2596  | 13640 | 1781  | 480   |

## **1.4 Domestic Energy Resources**

|       |                       |           | Oil                |                   |                       |
|-------|-----------------------|-----------|--------------------|-------------------|-----------------------|
|       | Proved Reserves       | R/P ratio | Annual Consumption | Annual Production | Import                |
|       | Billion Barrels       | Years     | Million Tons       | Million Tons      | % of Consumption      |
| World | 1194 (100%)           | 41        | 3799 (100%)        | 3865 (100%)       |                       |
| U.S.  | 29.3 (2.5%)           | 11        | 949 (25%)          | 329 (8.5%)        | 65%                   |
| China | 16.0 (1.3%)           | 13        | 334 (8.8%)         | 174 (4.5%)        | 48%                   |
| India | 5.6 (0.5%)            | 19        | 120 (3.2%)         | 37.9 (1%)         | 68%                   |
|       |                       |           | Natural Gas        |                   |                       |
|       | Proved Reserves       | R/P ratio | Annual Consumption | Annual Production | Import                |
|       | Trillion cubic meters | Years     | MTOE               | MTOE              | % of Consumption      |
| World | 179 (100%)            | 66        | 2425 (100%)        | 2433 (100%)       |                       |
| U.S.  | 5.5 (3.1%)            | 10        | 581 (24%)          | 486 (20%)         | 20%                   |
| China | 2.2 (1.3%)            | 54        | 37.1 (1.5%)        | 36.9 (1.5%)       | 0.5%                  |
| India | 0.92 (0.5%)           | 31        | 29.5 (1.2%)        | 27.1 (1.1%)       | 9%                    |
|       |                       |           | Coal               |                   |                       |
|       | Proved Reserves       | R/P ratio | Annual Consumption | Annual Production | Import                |
|       | Billion Tons          | Years     | MTOE               | MTOE              | % of Consumption      |
| World | 909.1 (100%)          | 164       | 2799 (100%)        | 2751 (100%)       |                       |
| U.S.  | 246.6 (27.1%)         | 245       | 566 (20%)          | 568 (21%)         | -0.4%                 |
| China | 114.5 (12.6%)         | 59        | 985 (35%)          | 1007 (37%)        | -2%                   |
| India | 44 (5%)               | 110       | 204 (7%)           | 191 (7%)          | 6%                    |
|       |                       |           |                    | BP 2005 / C       | hikkatur & Sagar 2007 |

October 17, 2007

Chikkatur (ERG colloquium)

# 1.5 Key Energy Challenges

- Increase infrastructure and economic growth
  - Energy consumption will increase
  - Need to increase standards of living, particularly rural poor
- Energy security and access to energy resources
  - Low domestic resources of oil and gas (oil security/peak oil)
  - Significant domestic coal resources
  - Cooking fuels (biomass security) and stable electricity supply
  - Affordability is important
- Basic amenities and energy services to all citizens
  - Rural energy needs / modernization
  - Key for poverty reduction
- Local environmental protection (pollution control)
- Global Climate Change
  - Significant impacts on water, agriculture, and coastal areas
  - Need to prepare for mitigation

## 2.0 Importance of coal for India

- Coal: 53% of commercial energy; 71% of electricity generation
- 80% of domestic coal produced is used for electricity generation
- Coal use has damaged local environment and accounts for about 40% of India's GHG emissions
- Coal mining has had severe social and environmental impacts
- Electricity generation expected to increase six-fold by 2030
   600 TWh in 2004-05 → 3600-4500 TWh by 2030
  - 10 GW of coal-power installed 2002-2007
  - 45 GW of coal-power planned for 2007-2012
- Future growth of electricity in India is expected to rely heavily on coal

### 2.1 Future Coal Demand



- Indian projections higher than IEA/EIA
- Domestic production might be unable to cope with demand
  → Rising imports

#### More coal mining and coal use in India

Chikkatur (ERG colloquium)

### 3.0 Technologies & Indian Coal Power

- Indian coal is of poor quality (high ash and low calorific value)
  - Technologies need to be adapted for Indian coal

#### Technologies

- Subcritical Pulverized Coal (PC)
  - Dominated by BHEL (210 MW and 500 MW units)
  - Overall net efficiency ~29% HHV (500 MW 33%)
  - Technologies licensed from foreign manufacturers
  - Little domestic innovation for advanced PC technologies.
- Circulating Fluidized Bed Combustion
  - BHEL R&D success
  - Niche applications (lignite)
- Supercritical PC (under consideration/construction)
  - Foreign/Licensed technologies

#### But, there are now a range of new technologies that might be relevant to meeting the *challenges and constraints* of India coal-power sector

October 17, 2007

## 3.1 Challenges & Technology Policy

- Need for rapid growth to keep with development needs
  *Policy*: Relatively high maturity of technologies (fast deployment)
- Enhancing Energy Security
  - Policy: Able to use domestic coal or be fuel flexible
- Protection of Local Environment
  - Regulations on particulate emissions, but not  $SO_x/NO_x$  (only ambient air)
  - *Policy*: High efficiency

Promote installation of pollution control equipment

- Carbon Mitigation
  - India's per capita carbon emissions low compared to China & U.S.
  - Not yet a serious concern (likely be part of international negotiations)
  - *Policy*: High efficiency

Preparing for capture & storage

## 3.2 Constraints & Technology Policy

- Coal availability (uncertainty of reserves) and poor quality
  - No measure of reserves, only geological resources
  - Policy: Technology pathways depend on domestic vs. imported coal
    Technology choices for domestic coal may be limited
- Financial resource limitations
  - Most power projects financed with domestic resources
  - Policy: Low cost/risk technologies are favored
- Limited Technical Capacity (R&D, manufacturing, O&M)
  - Policy: Technologies need to be consonant with capacity
- Institutional issues
  - Government domination, changing structure, lack of domestic energy policy research, "panic mode" of operation
  - *Policy*: Affect technology choice/deployment strategies

## 4.0 Technology Decision Making

- Lack of engagement with a wider range of stakeholders
  - Range of stakeholders (not just industries) affected by technology choices
  - Multiplicity of perspectives & values and conflicts between values/objectives
- Government and industry directly interlinked
  - Decisions often dominated by industry needs
- Technology decisions made primarily by bureaucrats / technocrats
  - Expert Committees
  - No explicit consideration of broader societal issues
- Lack of transparency
  - Usually only final reports are available
  - Meeting records and primary data not easy to obtain, if available
- Critical assessment of data and data analysis is often missing
  - Context and impact of decisions taken in other sectors
- Limited and evolving knowledge of technologies
  - Incomplete data and information in Indian context
  - Technology forecasts cost and performance uncertainty
  - Evolving technological capacity in the country

October 17, 2007

### 4.1 Technology Roadmapping Process



#### 4.2 Technology Comparison

| Technology                       | Subcritical<br>PC                                       | Supercritical<br>PC (SC-PC)                                                         | Ultra<br>supercritical<br>PC (USCPC)                    | Circulating<br>FBC (CFBC)                                                                | Pressurized<br>FBC (PFBC)                                                                 | Oxyfuel<br>PC/CFBC                                                                 | IGCC<br>Entrained<br>Flow                                         | IGCC<br>Fluidized<br>bed                                             | IGCC<br>Moving/Fixed<br>Bed                                                                                          |
|----------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Currently in<br>use at:<br>India | Almost all<br>Indian TPS                                | Sipat-I TPS<br>Barh TPS                                                             |                                                         | Surat Lignite,<br>Akrimota<br>Lignite                                                    | R&D, pilot<br>scale plant.                                                                |                                                                                    | Might be<br>useful for<br>using refinery<br>residues.             | R&D, pilot<br>scale plant.<br>Plans for<br>demonstration<br>plant.   | R&D, pilot<br>scale plant.                                                                                           |
| Worldwide                        | Standard<br>technology<br>worldwide                     | Europe<br>(Denmark,<br>Netherland,<br>Germany);<br>Japan, U.S.,<br>China,<br>Canada | Netherlands,<br>Denmark,<br>Japan                       | U.S., Europe,<br>Japan, China,<br>Canada                                                 | Japan, Demo<br>plants in<br>Europe, U.S.                                                  | Developme<br>nt and<br>planned<br>pilot plants<br>Useful for<br>mainly for<br>CCS. | Demo/<br>commercial<br>plants in U.S.,<br>Europe,<br>Japan, China | Mainly used<br>for chemicals<br>production<br>and poly<br>generation | Small units in<br>Europe using<br>biomass and<br>waste. Most<br>gasifiers are<br>used for<br>chemicals<br>production |
| Level of<br>Maturity             | Commercial                                              | Commercial                                                                          | Commercial /<br>demonstration                           | Commercial                                                                               | Demonstration                                                                             | R&D /<br>Pilot scale                                                               | Gasifier –<br>commercial;<br>IGCC – pre-<br>commercial.           | Gasifier –<br>commercial;<br>IGCC –<br>demonstration                 | Gasifier –<br>commercial;<br>IGCC – small<br>pilot plants.                                                           |
| Net Efficiency<br>(HHV) India:   | 31 – 34%;<br>33%                                        | 35%                                                                                 |                                                         | 30%; 33%                                                                                 | 38%                                                                                       |                                                                                    |                                                                   | 40%                                                                  |                                                                                                                      |
| Worldwide:                       | 36-39%                                                  | 39 - 41%                                                                            | 40-44%                                                  | 34 - 40%                                                                                 | 40%                                                                                       | 25% - 34%                                                                          | 35-40%                                                            | 44-48%                                                               | 45-49%                                                                                                               |
| Capital Cost<br>(\$/kW) India:   | 610 – 750                                               |                                                                                     |                                                         | 770                                                                                      | 1240                                                                                      |                                                                                    |                                                                   | 1290                                                                 |                                                                                                                      |
| Worldwide:                       | 930-1090                                                | 1090-1290                                                                           | 960-1300                                                | 1070-1340                                                                                | 1400-1500                                                                                 | 1400-2400                                                                          | 1200-1600                                                         | 1250-1270                                                            | 1320-1380                                                                                                            |
| Fuel feedstock                   | Hard coal,<br>lignite, fuel<br>oil, petcoke,<br>biomass | Hard coal,<br>lignite, fuel<br>oil, petcoke,<br>biomass                             | Hard coal,<br>lignite, fuel<br>oil, petcoke,<br>biomass | Hard coal,<br>lignite, MSW,<br>washery<br>middlings,<br>fuel oil,<br>petcoke,<br>biomass | Hard coal,<br>lignite, MSW,<br>washery<br>middlings,<br>fuel oil,,<br>petcoke,<br>biomass | Same as<br>PC and<br>CFBC                                                          | Hard coal<br>(low ash is<br>better),<br>lignite,<br>petcoke,      | Hard coal,<br>lignite, MSW,<br>biomass.                              | Hard coal,<br>lignite,<br>petcoke,<br>biomass,<br>MSW.                                                               |

October 17, 2007

Chikkatur (ERG colloquium)

#### 4.2 Technology Comparison

| Technology                       | Subcritical<br>PC                                                                                                                  | Supercritical<br>PC (SC-PC)                                                         | Ultra<br>supercritical<br>PC (USCPC)                    | Circulating<br>FBC (CFBC)                                                                | Pressurized<br>FBC (PFBC)                                                                 | Oxyfuel<br>PC/CFBC                                                                 | IGCC<br>Entrained<br>Flow                                         | IGCC<br>Fluidized<br>bed                                             | IGCC<br>Moving/Fixed<br>Bed                                                                                          |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Currently in<br>use at:<br>India | Almost all<br>Indian TPS                                                                                                           | Sipat-I TPS<br>Barh TPS                                                             |                                                         | Surat Lignite,<br>Akrimota<br>Lignite                                                    | R&D, pilot<br>scale plant.                                                                |                                                                                    | Might be<br>useful for<br>using refinery<br>residues.             | R&D, pilot<br>scale plant.<br>Plans for<br>demonstration<br>plant.   | R&D, pilot<br>scale plant.                                                                                           |  |
| Worldwide                        | Standard<br>technology<br>worldwide                                                                                                | Europe<br>(Denmark,<br>Netherland,<br>Germany);<br>Japan, U.S.,<br>China,<br>Canada | Netherlands,<br>Denmark,<br>Japan                       | U.S., Europe,<br>Japan, China,<br>Canada                                                 | Japan, Demo<br>plants in<br>Europe, U.S.                                                  | Developme<br>nt and<br>planned<br>pilot plants<br>Useful for<br>mainly for<br>CCS. | Demo/<br>commercial<br>plants in U.S.,<br>Europe,<br>Japan, China | Mainly used<br>for chemicals<br>production<br>and poly<br>generation | Small units in<br>Europe using<br>biomass and<br>waste. Most<br>gasifiers are<br>used for<br>chemicals<br>production |  |
| Level of                         | · 1                                                                                                                                | · 1                                                                                 | · 1 /                                                   | · 1                                                                                      |                                                                                           |                                                                                    | a .c                                                              | a .c                                                                 | Gasifier –                                                                                                           |  |
| Maturity                         | Maturity Technologies are at different stages of development worldwide<br>Efficiency and cost highly dependent on specific context |                                                                                     |                                                         |                                                                                          |                                                                                           |                                                                                    |                                                                   |                                                                      |                                                                                                                      |  |
| Net Efficiency                   | ency                                                                                                                               |                                                                                     |                                                         |                                                                                          |                                                                                           |                                                                                    |                                                                   |                                                                      |                                                                                                                      |  |
| (HHV) India:                     | Cons                                                                                                                               | istent en                                                                           | aineerina                                               | and ecor                                                                                 | nomic ana                                                                                 | alvses n                                                                           | eeded for                                                         | India                                                                |                                                                                                                      |  |
| Worldwide:                       | 00110                                                                                                                              |                                                                                     |                                                         |                                                                                          |                                                                                           |                                                                                    |                                                                   | maia                                                                 | 45-49%                                                                                                               |  |
| Capital Cost<br>(\$/kW) India:   | 610 - 750                                                                                                                          |                                                                                     |                                                         | 770                                                                                      | 1240                                                                                      |                                                                                    |                                                                   | 1290                                                                 |                                                                                                                      |  |
| Worldwide:                       | 930-1090                                                                                                                           | 1090-1290                                                                           | 960-1300                                                | 1070-1340                                                                                | 1400-1500                                                                                 | 1400-2400                                                                          | 1200-1600                                                         | 1250-1270                                                            | 1320-1380                                                                                                            |  |
| Fuel feedstock                   | Hard coal,<br>lignite, fuel<br>oil, petcoke,<br>biomass                                                                            | Hard coal,<br>lignite, fuel<br>oil, petcoke,<br>biomass                             | Hard coal,<br>lignite, fuel<br>oil, petcoke,<br>biomass | Hard coal,<br>lignite, MSW,<br>washery<br>middlings,<br>fuel oil,<br>petcoke,<br>biomass | Hard coal,<br>lignite, MSW,<br>washery<br>middlings,<br>fuel oil,,<br>petcoke,<br>biomass | Same as<br>PC and<br>CFBC                                                          | Hard coal<br>(low ash is<br>better),<br>lignite,<br>petcoke,      | Hard coal,<br>lignite, MSW,<br>biomass.                              | Hard coal,<br>lignite,<br>petcoke,<br>biomass,<br>MSW.                                                               |  |

October 17, 2007

# 4.3 Technology Ratings

#### Present circumstances

| Attribute                       | Subcritical PC -<br>no FGD | SC-PC | USC-PC | CFBC<br>(subcritical) | PFBC | Oxyfuel<br>PC/CFBC | IGCC<br>Entrained | IGCC<br>Fluidized | IGCC<br>Moving |
|---------------------------------|----------------------------|-------|--------|-----------------------|------|--------------------|-------------------|-------------------|----------------|
| Ability to use domestic coal    | 10                         | 8     | 5      | 10                    | 10   | 8                  | 1                 | 7                 | 7              |
| Maturity of technology          | 10                         | 9     | 7      | 10                    | 2    | 1                  | 5                 | 2                 | 2              |
| Indigenous Technical Capability | 10                         | 8     | 3      | 10                    | 1    | 3                  | 1                 | 5                 | 4              |
| Low capital cost                | 10                         | 7     | 3      | 9                     | 3    | 1                  | 3                 | 2                 | 2              |
| Efficiency                      | 1                          | 5     | 10     | 1                     | 6    | 3                  | 9                 | 8                 | 8              |
| Low environmental impact        | 1                          | 4     | 7      | 3                     | 5    | 6                  | 10                | 10                | 10             |

#### Future scenario

| Attribute                       | Subcritical PC-no<br>FGD | SC-PC | USC-PC | CFBC<br>(supercritical) | APFBC | Oxyfuel<br>PC/CFBC | IGCC<br>Entrained | IGCC<br>Fluidized | IGCC<br>Moving |
|---------------------------------|--------------------------|-------|--------|-------------------------|-------|--------------------|-------------------|-------------------|----------------|
| Ability to use domestic coal    | 10                       | 10    | 6      | 10                      | 10    | 10                 | 1                 | 7                 | 7              |
| Maturity of technology          | 10                       | 10    | 9      | 10                      | 1     | 3                  | 8                 | 4                 | 4              |
| Indigenous Technical Capability | 10                       | 9     | 5      | 9                       | 1     | 4                  | 5                 | 7                 | 6              |
| Low capital cost                | 10                       | 8     | 6      | 8                       | 1     | 4                  | 6                 | 4                 | 4              |
| Efficiency                      | 1                        | 7     | 9      | 6                       | 8     | 4                  | 10                | 9                 | 9              |
| Low environmental impact        | 1                        | 4     | 8      | 5                       | 7     | 6                  | 10                | 10                | 10             |
| Carbon capture potential        | 2                        | 4     | 7      | 5                       | 1     | 10                 | 9                 | 9                 | 9              |

# 4.4 Technology Ranking



#### Present circumstances

Future scenario

Geometric mean is more sensitive to distribution of ratings

- Supercritical PC is best suited in the near term
- Subcritical PC is not suitable in the long term
- Agnostic on whether combustion or gasification is the long term "winner"

## 4.5 Illustrative Roadmap

- Not make rigid technology choices (gasification vs. combustion)
- Need for different RD<sup>3</sup> strategies for each technology
  - IGCC: use of domestic/imported coal can have different deployment strategies



### 5.0 Short-term "no-regret" policies

- Improve efficiency of existing system
  - Gives the time and breathing space to enact changes
    - Generation
    - T&D loss reduction
    - Demand management and end-use efficiency
- Deploy high-efficiency combustion technologies in the near term (supercritical PC/CFBC)
- Long-term approach for emerging technologies
  - Create a monitoring and feasibility assessment program
  - Strategic RD<sup>3</sup> for advancing emerging technologies—technology roadmapping
- Enforce and tighten environmental pollution controls
  - Key for economic carbon capture
- Invest in detailed geological storage assessments
  - Locations, capacity, storage mechanisms

## 5.1 Enabling conditions

#### Necessary conditions for implementing short-term polices and preparing for future

- Improving the coal sector
  - Reducing uncertainties in coal reserves
  - Better mining practices and technologies
  - Resolve environmental and social issues
  - Part of our ongoing project with the Indian Planning Commission
- Improved technology analysis and innovation systems
  - Continuous technology analysis (monitoring/assessments)
  - Need for more funding and better use of funding
- Inter-ministerial and regulatory coordination
  - Bringing together multiple government agencies with varied interests
- Domestically-driven energy policy analysis
  - Need to build capacity and work with government institutions
  - Necessary for integrating energy policies with broader issues (national security, environment, labor,etc.)
- International action & cooperation for climate change mitigation
  - Industrialized countries need to lead by example
  - Early action can lower technology risks and costs for developing countries

# 6.0 Way forward...

- Need for better technology decision-making processes
- Government needs to play an active role in technology planning
- Vision for the sector must be based on:
  - Challenges & Constraints
  - Include input from major stakeholders (not just industries)
  - Consensus driven process
- Technology roadmapping is a useful tool
  - Applicable to many sectors (coal, RETs, etc.)
  - Advance specific elements of technologies to ensure deployment as and when needed
  - Strategic RD<sup>3</sup> program (part of roadmapping process)

## Acknowledgements

#### Collaborator

Ambuj Sagar Senior Research Associate (ETIP) Assistant Dean (School of Engineering, Harvard U.)

#### Funding:

David and Lucille Packard Foundation

Shell Exploration (Gift)

BP Alternative Energy and BP Carbon Mitigation Initiative (general support grants)

#### Project on Energy Technology Innovation Policy (ETIP)

Belfer Center for Science and International Affairs Kennedy School of Government, Harvard U.