Negligence, Strict Liability, and Responsibility for Climate Change

David Weisbach
University of Chicago Law School
USA
Negligence, Strict Liability, and Responsibility for Climate Change

David Weisbach
University of Chicago Law School

Prepared for
The Harvard Project on International Climate Agreements
THE HARVARD PROJECT ON INTERNATIONAL CLIMATE AGREEMENTS

The goal of the Harvard Project on International Climate Agreements is to help identify key design elements of a scientifically sound, economically rational, and politically pragmatic post-2012 international policy architecture for global climate change. It draws upon leading thinkers from academia, private industry, government, and non-governmental organizations from around the world to construct a small set of promising policy frameworks and then disseminate and discuss the design elements and frameworks with decision-makers. The Project is directed by Robert N. Stavins, Albert Pratt Professor of Business and Government, John F. Kennedy School of Government, Harvard University. For more information, see the Project’s website: http://belfercenter.ksg.harvard.edu/climate

Acknowledgements

Major funding for the Harvard Project on International Climate Agreements has been provided by a grant from the Climate Change Initiative of the Doris Duke Charitable Foundation. Additional support has been provided by Christopher P. Kaneb (Harvard AB 1990); the James M. and Cathleen D. Stone Foundation; Paul Josefowitz (Harvard AB 1974, MBA 1977) and Nicholas Josefowitz (Harvard AB 2005); the Enel Endowment for Environmental Economics at Harvard University; the Belfer Center for Science and International Affairs at the Harvard Kennedy School; and the Mossavar-Rahmani Center for Business and Government at the Harvard Kennedy School.

Citation Information

The views expressed in the Harvard Project on International Climate Agreements Discussion Paper Series are those of the author(s) and do not necessarily reflect those of the John F. Kennedy School of Government or of Harvard University. Discussion Papers have not undergone formal review and approval. Such papers are included in this series to elicit feedback and to encourage debate on important public policy challenges. Copyright belongs to the author(s). Papers may be downloaded for personal use only.
Negligence, Strict Liability, and Responsibility for Climate Change

David Weisbach

July 7, 2010

JEL No. __

ABSTRACT

This paper examines the data on responsibility for climate change due to past emissions. It addresses two aspects of responsibility. First it shows that the data present a mixed picture. By some measures, developed or wealthy countries are responsible for most past emissions while on other means, responsibility is spread widely with poor countries responsible for a majority of emissions. The differences in the measurements are due two factors: whether the data uses a comprehensive measure of emissions and the extent to which the data is aggregated into regions. The more comprehensive the measure and the less aggregation, the more that poor countries are responsible for past emissions. Second, it examines how theories of responsibility apply to the data. The most well developed theories of responsibility that impose an obligation on injurer to make a payment to victims are the theories underlying tort law. The paper shows that standard fault-based tort theories cannot be used to support climate change obligations. Instead, the theory would have to rely on strict liability, give up on the normally required connection between injurer and victim, and accept undesirable distributive consequences. Moreover, it would not be a basis for ongoing obligations to reduce emissions because relative emissions of nations will change over time. Instead, were such a theory of obligation to be sustainable, it could only be used to support a one-time payment for harm.

David Weisbach

The University of Chicago Law School

d-weisbach@uchicago.edu
Claims about responsibility for past greenhouse gas emissions are one of the central reasons for the failure of recent climate negotiations. The conventional account is that wealthy countries are responsible for climate change and developing countries are the victims. Developing nations such as China and India argue that they therefore should not have to reduce emissions; they are not responsible for the harms and should not have to pay for them. Instead, they should be compensated for the harms imposed on them by others. While developed nations have agreed to provide some adaptation funds to developing nations, they resist claims about responsibility as a general basis for allocating emissions reductions. They argue that only global action can adequately address the problem, and that arguing about past actions only gets in the way of pragmatic solutions.

Because of its importance to climate negotiations, philosophers, scientists, and legal analysts have made arguments about the extent to which past emissions should give rise to obligations of one sort or another. For example, the philosopher Peter Singer argued as follows:

To put it in terms a child could understand, as far as the atmosphere is concerned, the developed countries broke it. If we believe that people should contribute to fixing something in proportion to their responsibility for breaking it, then the developed nations owe it to the rest of the world to fix the problem with the atmosphere.

1 Brazil has gone so far as to propose a mathematical formula for calculating responsibility and proposed that obligations under the Kyoto Protocol be allocated based on the resulting calculations. The Brazilian Proposal can be found at unfccc.int/resource/docs/1997/agbm/misc01a03.pdf. For a summary of the history and impact of the Brazilian Proposal, see Emilio La Rovere, Laura de Macedo, and Kevin Baumert, *The Brazilian Proposal on Relative Responsibility for Global Warming*, in *Building on the Kyoto Protocol: Options for Protecting the Climate* (Kevin Baumert, ed. 2002).

Nations make a variety of other arguments as well. For example, they argue that poor nations should have a right to develop and an emissions cap would unfairly keep them poor. I focus here only on responsibility. See Eric Posner and David Weisbach, *Climate Change Justice* (2010) for a discussion of other arguments about who should have to pay for emissions reductions.
Others have made similar arguments.\(^2\) Scientists have weighed in through a United Nations body commissioned to study.\(^3\) They have proposed a variety of formulas based on measurements of the extent to which past emissions have led to or will in the future lead to actual temperature changes. Legal analysts have focused on the details of lawsuits against emitters and have also made more general ethical arguments.\(^4\)

This paper reexamines responsibility for climate change. Claims of responsibility are based on legal and ethical principles concerning liability for wrongdoing. They are, in essence, tort claims. Tort-law principles might be used in actual legal disputes, to make quasi-legal arguments in a negotiation, or to simply claim moral wrongdoing by a set of actors. The goal, therefore, will be to examine whether tort-law or similar theories of obligation apply to past greenhouse gas emissions.\(^5\)

\(^2\) Steve Vanderheiden, Atmospheric Justice, A Political Theory of Climate Change (2008); James Garvey, The Ethics of Climate Change, Right and Wrong in a Warming World (2008); Paul G. Harris, World Ethics and Climate Change (2010). For collections of essays about equity in climate abatement and adaptation more generally, see Fair Weather? Equity Concerns in Climate Change (Ferenc L. Toth ed., 1999); and Fairness in Adaptation to Climate Change (W. Neil Adger, Jouni Paavola, Saleemul Huq, and M.J. Mace, eds, 2006).

\(^3\) The United Nations Framework Convention on Climate Change delegated additional research on this issue to its Subsidiary Body for Scientific and Technological Advice, which in turn convened a scientific panel to evaluate the proposal. In 2007, this panel completed a series of reports on the proposal, which can be found at unfccc.int/methods_and_science/other_methodological_issues. An ad hoc group of scientists working on this research formed MATCH (Modeling and Assessment of Contributions to Climate Change). Their results can be found at match-info.net. Another group of scientists have created FAIR: Framework to Assess International Regimes for differentiation of commitments, found at www.mnp.nl/en/themasites/fair.

\(^5\) To be clear, I am not claiming that there need be an actual tort claim against emitting nations. Such claims are subject to numerous problems, many of which have been discussed elsewhere. Instead, I look to tort theories as the best theories for supporting the types of obligations that are claimed in the climate change treaty context.
Any claim of responsibility, tort-based or otherwise, must be based on causation, on a claim that the entity facing the obligation actual did the wrongful act. The first half of the paper addresses this issue by examining data on past emissions.

To do this I use data gathered by the World Resources Institute (an environmental NGO), publicly and freely available in their Climate Analysis Indicators Tool (CAIT). The data show that under a wide variety of measures, responsibility for greenhouse gas emissions is spread widely, with developing countries contributing as much as developed countries and with some poor countries at or near the top of all measures. For example, comprehensive measures of contributions to the stock of greenhouse gases in the atmosphere show that both developed and developing nations top the list. Of the countries at or near the top of the list, developing countries emit as much or more as developed countries. Similarly, if we measure emissions on a per capita basis or an intensity basis, many poor countries are near the top of the list. Simple stories about responsibility are simply not true.

These results immediately raise the question of why the measures presented here differ from the standard account that developed countries are responsible. The standard account is an artifact of the way that the emissions data is aggregated into regions. Poor countries with high emissions are averaged with poor countries with low emissions so that they do not show up in the data. Moreover, narrow measures of emissions, such as emissions from energy use only, are often used, and poor countries often do better on these narrow measures. There are no justifications for aggregating countries by region. The justifications for using narrow measures of emissions relate to availability of data and cannot be used to support claims about actual responsibility.

The second half of the paper addresses whether the measures of responsibility so far proposed are consistent with tort-based theories of responsibility for past harms. There are two broad approaches to tort obligations. The first is grounded in notions of responsibility or corrective justice. It focuses on both assigning responsibility for blameworthy acts and compensating victims of those acts. The second focuses on the

6 Found at cait.wri.org. The data presented here is consistent with the data in CAIT as of November 10, 2008.
incentives created by the tort system, viewing the tort system as a sort of Pigouvian tax on harm-causing activities. Under the latter approach, fault, and whether fault is even required, are determined instrumentally, and victim compensation, as we will see, may be positively harmful. The two approaches overlap in many cases, but also can produce distinct results in other cases.

I will examine how past emissions fit into each of these notions of tort obligations. Responsibility notions, I will argue, do not work very well in the climate change context. There are four problems. First, there is no feasible way to measure responsibility. The measurement of responsibility depends on the underlying theory of responsibility. In most theories of responsibility, dating back to Aristotle, an actor is responsible only where he is at fault, where he is culpable. Basing emissions calculations on fault, however, is a morass. The data cannot be used to determine which emissions are culpable and which ones are not, and they are unlikely to ever be able to do so. They do not, for example, help us determine when or whether it is a problem to burn fossil fuels to heat your home if you live in a very cold environment, what size car you can drive, whether it is ethical to eat meat (the production of meat causes high levels of emissions), and whether it is ethical to increase the population by having, say, more than two children. Carbon emissions are part of almost everything we do, and any attempt to determine fault would be perilous.

An alternative would be to base the claim of responsibility on a strict liability notion. We would, under this approach, count all emissions, regardless of whether they are harmful. These theories have limited acceptance even in the environmental context where they are most prevalent. Because we would not have to determine fault, using a strict liability approach would reduce the data requirements, although not entirely. We would still need to determine a starting date - strict liability can be (although rarely is) imposed fully retroactively, only prospectively, or somewhere in between. We would also have to be able to determine the size of any offsetting benefits created by emissions. That is, if an action imposes both harms and benefits on third parties, we care about the net
Synthetic fertilizers, for example, were invented in Germany and allow many countries to feed vastly greater numbers of individuals and also reduce deforestation by increasing the productivity of land. To determine Germany’s responsibility, we would have to determine the size of the resulting offset and make similar calculations for other sorts of offsets. Similar issues arise for population and immigration issues.

Second, tort law and responsibility-based arguments normally require a close connection between victims and injurers. Most of the victims of climate change, however, are not yet born and many of the injurers are already dead. Imposing an obligation on, say, 20-year olds today risks imposing obligations on people who are not primarily responsible for the injury and helping (by not imposing obligations) those who are not injured.

Third, given the data on emissions, tort-based responsibility-based arguments would also have bad distributive consequences because many poor nations are high emitters. In many cases, a strict application of these notions would impose crushing obligations on certain poor countries. Being poor does not excuse you from tort liability; poor nations could not use the bad distributive effects of a responsibility-based theory to avoid obligations. A climate treaty may have to choose between good distributive effects and basing future abatement obligations on responsibility for past emissions.

Finally, a claim of responsibility has to somehow incorporate ongoing emissions and, in particular, changes in emissions patterns that are likely to take place in the future. So far, responsibility-based claims take a snapshot of the past and use this to make claims about ongoing future actions. Unless the obligations are adjusted over time to account for new patterns of emissions, however, this approach will not accurately measure responsibility.

An alternative approach to tort obligations is to focus on incentives. The idea is that imposing an obligation to pay for harm forces actors to internalize the costs of their actions. This approach leads to somewhat...
different conclusions from the responsibility-based approach. An incentives-based approach is pragmatic and forward looking in addressing climate change, attempting to reduce emissions at the lowest possible cost. Rather than focusing on emissions from 50 or 100 years ago, or more, an incentives-based approach would focus on how structuring obligations under a treaty affects the decisions of actors today. In particular, future treaties must not give benefits to nations that resisted earlier treaties. The focus of an incentive-based approach, therefore, would be on recent climate-favorable or climate-unfavorable activities, rewarding nations that have reduced emissions now or in the recent past. Moreover, wealthy nations have a far greater ability to act now and for many reasons, likely put a higher value reducing climate change than do poor nations, which means that they should bear much of the burden in reducing emissions. But these considerations are entirely separate from considerations of responsibility, which, I will argue, are simply too ambiguous given the mixed data, for resolving a problem of this importance.

The two sections of the paper follow the two pieces of the argument. Section I considers the data on past emissions and the problem of aggregation. Section II considers theories of responsibility. Section III concludes.

I. Causation – Who Emitted in the Past?

Climate change is caused by a number of different greenhouse gases. Carbon dioxide is the most important greenhouse gas, but the Kyoto Protocol governs five additional gases (methane, nitrous oxide, PFC’s, HFC’s, and sulfur hexafluoride). The Intergovernmental Panel on Climate Change (the IPCC) lists around 60 gases that contribute to climate change (the six gases or categories of gases covered by Kyoto plus ozone depleting chemicals, fluorinated ethers, perfluoropolyethers and certain hydrocarbons). Moreover, land use change, such as deforestation or engaging in agriculture, changes the climate, for example, by changing the ability of the earth to absorb carbon dioxide, by changing the reflexivity or albedo of the Earth’s surface, by the release of gases from fertilizer, and by release of gases from tilling the soil. Aerosols have complex effects because they change the albedo and because they are greenhouse gases.
Any good measure of responsibility should consider all sources of climate change, to the extent possible.

A unit of one greenhouse gas will typically have a different effect on the climate than a unit of another greenhouse gas; different gases have different abilities to absorb various wavelengths of light and different levels of stability in the atmosphere. The IPCC has developed a method of comparing all of the various gases on a common metric, known as the Global Warming Potential. It is a measure of the contribution to climate change over 100 years compared to the contribution of a unit of carbon dioxide, known as CO$_2$-eq. All of the data used below (to the extent gases other than carbon dioxide are considered) uses CO$_2$-eq as the measure of emissions.

A. Data sources

The data on emissions varies considerably, both by source and by the time period. The World Resources Institute is an environmental think tank whose mission is to protect the Earth’s environment and, in particular, “protect the global climate system from further harm due to emissions of greenhouse gases.”

It developed the Climate Analysis Indicator Tool (CAIT) as a database of information on greenhouse gas emissions. CAIT is publicly and freely available. CAIT includes information on socioeconomic factors such as health, income, and education, as well as natural factors such as land size, population, and relative heating and cooling needs in addition to data on emissions. All the data used here is from CAIT.

The sources of the data used by CAIT are discussed extensively on their website, and I highlight here only the most central issues. In general, CAIT draws data from a number of different sources, most notably the carbon inventories required for developed countries under the United Nations Framework Convention on Climate Change (the

See wri.org/about

There are a number of other similar sources for emissions data. EDGAR (Emissions Data for Global Atmospheric Research) provides the data used in the IPCC chart reproduced below. See http://www.mnp.nl/edgar/. The Carbon Dioxide Information Analysis Center collects emissions data. See http://cdiac.ornl.gov/. The IPCC data is publicly available on their website. I chose CAIT because of its completeness and its ease of use.

UNFCCC). CAIT supplements the UNFCCC data with additional sources to fill in gaps and reduce uncertainties.

Carbon dioxide is the most important greenhouse gas and also, fortunately, is where the data is the strongest. Starting in 1990, developed countries (so-called Annex I countries under the UNFCCC) were obligated to submit greenhouse gas inventories using standardized and transparent methodologies, so the data for these countries since 1990 is generally good. Developing countries have fewer reporting obligations and the data is correspondingly less reliable. Some have submitted inventories of emissions from which one or two years of data can be derived but others have not yet submitted any data.

Emissions data for years prior to 1990 have to be stitched together from a variety of less accurate sources including the International Energy Agency and the Energy Information Administration. These sources, however, only extend the coverage back until the 1960’s at best. To go back to the beginning of the industrial revolution, as will be necessary under many measures of responsibility, CAIT relies on data from the Carbon Dioxide Information Analysis Center, which has data back to 1751.\footnote{CAIT itself includes data back to 1850.} There is no direct data on emissions going back this far. Instead, the data is derived from historical records of coal and oil production as well as imports and exports, on the theory that any extracted fossil fuel that was not exported must have been burned locally. As one might expect, the data gets less reliable when it goes back further in time.

All of the data in the CAIT database (and all other major databases on carbon dioxide emissions) allocate emissions to the physical location of the emissions. For example, suppose that an exporting country emits carbon while producing a product which is ultimately consumed by individuals in an importing country. The emissions physically come from the exporting country and, as a result, under the usual measure of emissions, all of the emissions are allocated there. This approach follows the IPCC convention for allocating emissions in its emissions inventories. It is not at all clear, however, that this is appropriate, and an alternative measure might use the place of consumption or some mix of production
and consumption. Section I presents a consumption-based measure of emissions based on input-output analysis and the GTAP 7 database.12

Non-CO\textsubscript{2} gases make up about 40\% of global emissions but data for emissions of these gases is sparse. CAIT currently has data for five additional greenhouse gases (CH\textsubscript{4}, N\textsubscript{2}O, PFC’s, HFC’s, and PF\textsubscript{6}) for four years, 1990, 1995, 2000, and 2005. The problem arises because emissions of these gases are from many dispersed sources where measurement is difficult. Major sources of CH\textsubscript{4} and N\textsubscript{2}O for example, include enteric fermentation in livestock, rice farming, soil tilling, landfills, and fugitive gases from coal mining. HFC emissions arise from leakages of systems such as air conditioning. Even for developed countries following UNFCCC protocols, the data is uncertain. For example, fugitive emissions of methane are, by their nature, hard to measure. For developing countries, the uncertainties are far worse. Where possible, the tables below use emissions from all six Kyoto gases, but in many cases, the data is unavailable and the tables list only emissions from carbon dioxide from the combustion of fossil fuels.

CAIT has data for emissions from land use change dating back to 1950 and up to 2005. They are based on estimates from independent researchers specializing in measuring emissions from land use change rather than on UNFCCC data. As CAIT notes, the errors associated with these estimates are substantial.13

One of the more difficult questions in determining greenhouse gas emissions in the past is allocating emissions when countries change their borders. Because many measures of responsibility go back for more than a century, the problem can be significant. CAIT allocates emissions to newly formed countries essentially pro rata. Suppose that a country splits into two new countries. CAIT looks at the relative emissions of the two new countries over the five year period following the split, and allocates emissions prior to the split based on that ratio. Although it is not clear that there is a better method, there are obvious problems with this approach.

12 The GTAP data base is a fully documented, publicly available, global data base which contains complete bilateral trade information, transport and protection linkages among 113 regions for 57 commodities for a single year (2004 in the case of the GTAP 7 Data Base). It is available at \url{https://www.gtap.agecon.purdue.edu/}.

13 These researchers have recently published land use change data going back to 1850, but this data is not included in CAIT and is not used here. These data only provide broad aggregates rather than country-by-country numbers. The data can be found at \url{cdiac.ornl.gov/trends/landuse/houghton/houghton.html}.
when used to allocate moral responsibility for emissions. For example, suppose that a country ruled by a dominant region forcibly locates highly polluting activities in a subservient region. It is not clear that the subservient region should be held responsible for these emissions. In addition, to the extent physical location is a good measure, the five year post-independence ratios of emissions may be a very poor proxy for the location of emissions in the distant past.

B. The Standard Numbers

The usual view is that the developing world is responsible for most past emissions. For example, the Pew Center Global Climate Change reports that “[i]ndustrialized countries have been historically responsible [for climate change] since they as a group have some of the highest per capita energy use and also have benefited from emitting vast quantities of greenhouse gases over the last century.” 14 Similarly, a paper published by Resources for the Future states that “[d]eveloped countries are responsible for the largest share of cumulative past GHG emissions by far.” 15 The United Nations Environment Programme states, “Historically the developed countries of the world have emitted most of the anthropogenic greenhouse gases.” 16

The IPCC present a chart summarizing this view, which is reproduced as Figure 1. 17 The chart presents data on per capita emissions of all six greenhouse gases and from land use change in 2004 aggregated into ten different regions. The width of the bars is based on the population in each region. 18 The percentages listed are the region’s share of total emissions in 2004.

17 IPCC, AR4, Working Group III, p. 106, Figure 1.4a.
18 This chart appears to be original to the IPCC. It is based on data from the EDGAR database.
As can be seen, the developed countries, represented by the UNFCCC Annex I nations, have vastly higher per capita emissions than poor nations, and poor nations in African and South Asia have low emissions but large populations.

The IPCC chart is based on data from the EDGAR database and the International Energy Agency.19 To confirm the results, I recreated the same chart using the CAIT data for emissions from 2005 using the six Kyoto gases and land use change. The result, while not precisely the same, is qualitatively similar. The results are presented in Table 1.

\textbf{Table 1: 2005 Emissions, CAIT data, IPCC Aggregation}

\begin{tabular}{|c|c|c|c|c|}
\hline
Country & \(\text{MtCO}_2 \text{-eq} \) & \% of Total & Tons Per Person & Thousands of People (2006) & \% World Total \\
\hline
USA & Canada & 7,618 & 17.64\% & 23 & 328,819 & 5.09\% \\
JANZ & 1,994 & 4.62\% & 13 & 152,307 & 2.36\% \\
EIT, Annex I & 3,530 & 8.17\% & 12 & 306,783 & 4.75\% \\
Latin American & 5,467 & 12.66\% & 10 & 551,136 & 8.53\% \\
\hline
\end{tabular}

19 Available at \url{http://www.mnp.nl/edgar/}
and Caribbean

<table>
<thead>
<tr>
<th>Region</th>
<th>MtCO2</th>
<th>% of Total</th>
<th>Tons/Person</th>
<th>Rank</th>
<th>$/Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe Annex II and M&T</td>
<td>4,655</td>
<td>10.78%</td>
<td>9.9</td>
<td>470,983</td>
<td>7.29%</td>
</tr>
<tr>
<td>Middle East</td>
<td>1,530</td>
<td>3.54%</td>
<td>9.6</td>
<td>159,209</td>
<td>2.46%</td>
</tr>
<tr>
<td>Other Non-Annex I</td>
<td>688</td>
<td>1.59%</td>
<td>7.0</td>
<td>98,560</td>
<td>1.53%</td>
</tr>
<tr>
<td>Africa</td>
<td>2,908</td>
<td>6.73%</td>
<td>3.2</td>
<td>906,503</td>
<td>14.03%</td>
</tr>
<tr>
<td>South Asia</td>
<td>5,662</td>
<td>13.11%</td>
<td>2.9</td>
<td>1,93,895</td>
<td>29.96%</td>
</tr>
<tr>
<td>Non-Annex I East Asia</td>
<td>8,206</td>
<td>19.00%</td>
<td>5.5</td>
<td>1,481,688</td>
<td>22.93%</td>
</tr>
</tbody>
</table>

C. Alternative views

In this section, I present a number of alternative views of the same data. I start with the simplest data – gross annual flows – and work up to more sophisticated approaches, such as per capita contributions to temperature changes.

Flows

Start with simplest measure: flows of the six most important greenhouse gases plus the effects of land use change. The list of the top 20 emitters in 2005 for the six Kyoto gases plus land use change is presented in Table 2. These countries make up 74% of worldwide emissions. The table also lists per capita emissions (in absolute terms and by rank) and per capita wealth (calculated on a purchasing power parity basis).

Table 2: Total GHG Emissions in 2005
CO2, CH4, N2O, PFCs, HFCs, SF6 and land use change, in Mt of CO2-eq.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>MtCO2e</th>
<th>% of Total</th>
<th>Tons/Person</th>
<th>Rank</th>
<th>$/Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>China</td>
<td>7,187</td>
<td>16.64%</td>
<td>5.5</td>
<td>91</td>
<td>4,524</td>
</tr>
<tr>
<td>2</td>
<td>United States</td>
<td>6,814</td>
<td>15.78%</td>
<td>23.1</td>
<td>10</td>
<td>42,672</td>
</tr>
<tr>
<td>3</td>
<td>Brazil</td>
<td>2,842</td>
<td>6.58%</td>
<td>15.3</td>
<td>18</td>
<td>8,745</td>
</tr>
<tr>
<td>4</td>
<td>Indonesia</td>
<td>2,042</td>
<td>4.73%</td>
<td>9.3</td>
<td>55</td>
<td>3,335</td>
</tr>
<tr>
<td>5</td>
<td>Russia</td>
<td>2,005</td>
<td>4.64%</td>
<td>14</td>
<td>23</td>
<td>12,797</td>
</tr>
<tr>
<td>6</td>
<td>India</td>
<td>1,866</td>
<td>4.32%</td>
<td>1.7</td>
<td>153</td>
<td>2,416</td>
</tr>
</tbody>
</table>

20 I look at the top 20 emitters because these are likely to be among the most important nations to include in a climate treaty. As discussed in section below, any selective use of data, even if merely for convenience and to help understanding, risks missing important information.
To see the relative contributions of the rich and the poor, divide the list into rich and poor, using the World Bank definition of high income of more than $11,906 per capita.21 High income countries make up half of the emissions of the group of top 20 emitters (and 36% of the worldwide total), roughly the same as the other countries in the top 20. Figure 2 illustrates:

\begin{table}[h]
\centering
\begin{tabular}{llllll}
\hline
\hline
7 & Japan & 1,356 & 3.14% & 10.6 & 44 & 31,041 \\
8 & Germany & 975 & 2.26% & 11.8 & 33 & 32,334 \\
9 & Canada & 804 & 1.86% & 24.9 & 9 & 35,660 \\
10 & Mexico & 683 & 1.58% & 6.6 & 79 & 13,025 \\
11 & United Kingdom & 645 & 1.49% & 10.7 & 43 & 32,941 \\
12 & South Korea & 569 & 1.32% & 11.8 & 34 & 23,884 \\
13 & Italy & 562 & 1.30% & 9.6 & 53 & 28,478 \\
14 & Australia & 559 & 1.29% & 27.4 & 6 & 32,175 \\
15 & Iran & 556 & 1.29% & 8 & 66 & 9,721 \\
16 & France & 549 & 1.27% & 9 & 59 & 31,131 \\
17 & Ukraine & 494 & 1.14% & 10.5 & 45 & 6,032 \\
18 & Nigeria & 455 & 1.05% & 3.2 & 118 & 1,795 \\
19 & Venezuela & 450 & 1.04% & 16.9 & 15 & 10,767 \\
20 & Spain & 437 & 1.01% & 10.1 & 49 & 27,960 \\
\hline
\end{tabular}
\end{table}

21 As of June 24, 2010, the World Bank classified all countries with per capita income of $11,906 or more as high income. See World Bank Country Classification, accessed June 24, 2010.
Very similar results hold if we look at all nations, not just the top 20 emitters – high income countries emit 45 percent of the global total while other countries emit the rest. If instead we separate countries into UNFCCC Annex I and all other countries we get similar although slightly different results because some Annex I countries are not wealthy. Annex I countries in the top 20 emitted 35 percent of the worldwide total in 2005. Non-Annex I in the top 20 emitted 39 percent of the total. Roughly similar numbers result when we look at all countries: Annex I countries emitted 41% of the worldwide total and non-Annex I countries emitted 57%, although, of course, there are more non-Annex I nations than Annex I nations and more people living in non-Annex I nations than in Annex I nations (scaled emissions are considered below). If we increase the standard for being wealthy to $15,000 per capita income, wealthy nations comprise 37 percent of annual emissions. If we use a narrower measure of emissions, just carbon dioxide, the total emissions from rich countries (using the same World Bank definition) in the top 20 goes up to around 49 percent and middle or poor countries go down to around 31% in 2005. The reason for the difference is that middle and poor countries have higher
emissions from land use change while rich countries have higher emissions from energy. Table 3 summarizes these results.

<table>
<thead>
<tr>
<th>Which nations?</th>
<th>Test</th>
<th>Wealthy/Annex I</th>
<th>Other nations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 20</td>
<td>Wealthy, World Bank definition</td>
<td>37%</td>
<td>37%</td>
</tr>
<tr>
<td>All nations</td>
<td>Wealthy, World Bank definition</td>
<td>45%</td>
<td>54%</td>
</tr>
<tr>
<td>All nations</td>
<td>Wealthy = $15,000 per capita</td>
<td>37%</td>
<td>62%</td>
</tr>
<tr>
<td>Top 20</td>
<td>Annex I</td>
<td>35%</td>
<td>39%</td>
</tr>
<tr>
<td>All nations</td>
<td>Annex I</td>
<td>41%</td>
<td>57%</td>
</tr>
<tr>
<td>Energy only, top 20</td>
<td>Wealthy, World Bank definition</td>
<td>49%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Stocks

Current emissions are not a very good measure of responsibility because carbon dioxide and other greenhouse gases have long lives in the atmosphere. Emissions in the past (and in the future) can contribute to climate change as much as emissions today. Therefore, most measures of responsibility for emissions look at past emissions. Unfortunately, the data for past emissions are far less available than for current emissions. CAIT only has data on land use change back to 1950 and up to 2000, and it does not have data on gases other than CO₂ prior to 1990. Figure 3 illustrates CAIT data on cumulative emissions from 1950 to 2000 from energy and land use change.²²

²² This data was accessed on CAIT in November of 2008. CAIT no longer includes land use change in its measure of cumulative emissions.
Figure 3

The numbers do not differ substantially from the flow data given above. Using the World Bank definition, high income countries in the top 20 emitters comprise 36% of cumulative emissions. Other countries make up 41% of cumulative emissions. Similar results hold if we look at the entire list. On the other hand, if we aggregate all Annex I countries (some of which are not high income), they make up about 53% of cumulative emissions.

If we want to go back further, we can only look at carbon dioxide emissions from energy use. The CAIT database has emissions from energy use from 1850 to 2006. To allow for some decay of carbon dioxide over this 156 year period, I looked at the CAIT concentration data rather than cumulative emissions data. (The difference is that concentration data estimates the removal of carbon dioxide from the atmosphere.)
Out of the top 20 emitters, (currently) high income countries (under the World Bank definition) are responsible for 71% of the global concentrations of carbon dioxide. Annex I countries are responsible for the same amount. If we raise the threshold for high income countries to $15,000, high income countries are responsible for 58% of current concentrations. (The main effect of raising the threshold this way is to exclude Russia and Mexico from the list of high income countries.) The numbers show overwhelming responsibility for climate change by one group of nations if we use a narrow measure (carbon dioxide from energy use), go back a very long period in time (over 150 years) and use a particular definition of high income. Broader measures of emissions or different aggregations produce different numbers.

Per capita measures

The IPCC chart given above was based on per capita emissions. The reason, presumably, is that notions of responsibility depend on the number of people in the nation. It would not make sense, for example, to say that China, with a population of 1.3 billion people, is responsible for emitting no more than Iceland, with a population of around 300,000 people.

We can measure per capita emissions on either a flow basis or a stock basis. Table 4 is a list of the top 20 countries for per capita emissions in 2005 for the six Kyoto gases plus land use change. The notable aspect of this list is that most of the top countries are small and wealthy. A large number of the countries on this list have economies based on petroleum extraction, which is highly carbon intensive.23

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>CO₂e /Person</th>
<th>MtCO₂e</th>
<th>% of Total</th>
<th>$/Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Qatar</td>
<td>66.6</td>
<td>59</td>
<td>0.14%</td>
<td>63,588</td>
</tr>
<tr>
<td>2</td>
<td>United Arab Emirates</td>
<td>38.2</td>
<td>157</td>
<td>0.36%</td>
<td>51,586</td>
</tr>
</tbody>
</table>

23 As of 2009, the CAIT database indicated that the top per capita emitters included a number of much poorer nations. The top two per capita emitter was Belize. Guyana was the third highest per capita emission, Malaysia was fourth, and Papua New Guinea eighth. It is not clear why these countries dropped off of the more recent list. The measurement error is likely high for these countries. For a list of the stock, per capita emissions from CAIT as of 2009, see Eric Posner and David Weisbach, Climate Change Justice (2010), Table 1.6.
3 Kuwait 34.8 88 0.20% 45,152
4 Brunei 32.7 12 0.03% 48,015
5 Bahrain 29.3 21 0.05% 25,600
6 Australia 27.4 559 1.29% 32,175
7 Trinidad & Tobago 27.3 36 0.08% 21,115
8 Luxembourg 26.7 12 0.03% 70,762
9 Canada 24.9 804 1.86% 35,660
10 United States 23.1 6814 15.78% 42,672
11 Bolivia 22 202 0.47% 3,857
12 New Zealand 19.1 79 0.18% 24,801
13 Turkmenistan 18.9 91 0.21% 5,141
14 Oman 18.5 48 0.11% 20,548
15 Venezuela 16.9 450 1.04% 10,767
16 Ireland 16.7 70 0.16% 39,671
17 Saudi Arabia 16.3 377 0.87% 21,372
18 Brazil 15.3 2842 6.58% 8,745
19 Equatorial Guinea 15.3 9 0.02% 24,417
20 Central African Republic 14.6 61 0.14% 658

The qualitative nature of the list does not change if we measure cumulative emissions on a per capita basis, as long as land use is included.\(^ {24}\) If we do not include land use (say because we want to go back to years before land use data was available), many of the poor countries that have engaged in significant deforestation fall off of the list.\(^ {25}\)

A central question behind this data is what to make of the dominance of small countries that are not likely to be an important part (if any) in a new climate treaty. If we were to limit the list to major emitters plus wealthy countries – the most important candidates for a climate treaty – Australia, Canada, the United States, Venezuela, and Brazil would

\(^{24}\) The list becomes somewhat more concentrated with wealthy nations, but the top five countries on a per capita basis using cumulative emissions of CO\(_2\) plus land use from 1950 to 2000 are Belize, Guyana, Luxembourg, Malaysia, and Papua New Guinea, only one of which is wealthy. The United States moves up from 14\(^ {st} \) to 10\(^ {th} \).

\(^ {25}\) Using the EDGAR database, the results look qualitatively similar – many poor countries are at the top of the list – but the particular countries vary significantly. The top 20 countries using the same basic calculation are Gibraltar, American Samoa, Qatar, Netherlands Antilles, Brunei, the United Arab Emirates, the US Virgin Islands, Bahrain, Bolivia, Australia, Belize, Angola, Kuwait, the US, Turk and Caicos, Norway, and New Zealand. Belize drops to 10\(^ {th} \). The US remains at 14\(^ {th} \).
top the list. Russia is 23rd, Indonesia is 55th, China is 91st (at almost exactly the global average) and India is 153rd, out of 185 countries in CAIT. To the extent that China and India are the central developing country negotiating partners in a climate treaty, it is clear that they have much lower per capita emissions than wealthier nations. Brazil, on the other hand has high per capita emissions and is not wealthy.

Production v. Consumption

The numbers in the CAIT database are, like the IPCC inventories, based on production. If a country emits carbon dioxide during the production of a good, the emissions are attributed to that country even if the good is consumed elsewhere. An alternative measure would attribute the emissions to the consumer. There is no clear reason why one measure is preferable to the other – there is a multiparty transaction in which all the parties gain and which results in emissions. The advantage of production numbers is that they are far easier to collect, but that does not make them correct.

Production data can be converted into consumption data using input-output analysis. The basic procedures are described in an extensive literature.\(^{26}\) The table below is from the calculations based on GTAP 2004 data.\(^{27}\) The production numbers are close to (but not precisely the same as) the CAIT data for emissions from energy.

The way to read the table is that the diagonal entries are the emissions from the production of goods that are consumed locally. Across a row are emissions from local production for goods consumed elsewhere. For example, the United States “exported” 209 million metric tons of carbon dioxide to the EU in that 209 million tons of emissions in the United States are for the production of goods consumed in the EU. Total emissions from production in the United States in 2004 were 5,340 million metric tons. Reading down a column gives the imports. The United States imported 223 million tons of carbon dioxide from the EU in that the emissions from production occurred in the EU but the consumption was in the United

\(^{27}\) The calculations are taken from Joshua Elliott, Ian Foster, Samuel Kortum, Todd Munson, Fernando Perez Cervantes, and David Weisbach, *Trade and Carbon Taxes*, 100 American Economic Review 465 (2010).
States. The row labeled “Cons” gives us the total emissions in a region measured on a consumption basis. The column labeled “Prod” gives us the traditional production-based measure. The bottom row, “Net,” gives us the difference.\(^{28}\)

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>Annex I</th>
<th>Non-Annex I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USA</td>
<td>EU</td>
<td>RUS</td>
</tr>
<tr>
<td>USA</td>
<td>4618</td>
<td>209</td>
<td>5</td>
</tr>
<tr>
<td>EU</td>
<td>223</td>
<td>4053</td>
<td>33</td>
</tr>
<tr>
<td>RUS</td>
<td>57</td>
<td>261</td>
<td>1401</td>
</tr>
<tr>
<td>JAZ</td>
<td>47</td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>CAN</td>
<td>156</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>CHK</td>
<td>321</td>
<td>329</td>
<td>19</td>
</tr>
<tr>
<td>LAM</td>
<td>197</td>
<td>84</td>
<td>4</td>
</tr>
<tr>
<td>ROW</td>
<td>192</td>
<td>444</td>
<td>23</td>
</tr>
<tr>
<td>Cons</td>
<td>5811</td>
<td>5449</td>
<td>1493</td>
</tr>
<tr>
<td>Net</td>
<td>471</td>
<td>766</td>
<td>-398</td>
</tr>
</tbody>
</table>

As can be seen, the United States, the EU, and Japan, Australia, and New Zealand are substantial importers of carbon. Of the Annex I nations, only Russia is a substantial exporter. This is likely because Russia exports fossil fuels and fossil fuel extraction is highly energy-intensive. All of the non-Annex I countries or regions are net exports, with China being by far the largest exporter.

\(^{28}\) Note that trade in fossil fuels do not affect the numbers. Under the normal production measure, emissions are counted where they occur, so if a nation purchases fossil fuels from another nation and then burns the fuel, the purchasing nation is attributed the emissions. That is, trade in actual carbon molecules is already taken into account under production-based measures. The table adjusts the production measure for virtual trade in carbon – trade in goods whose production resulted in emissions.
On net, shifting to consumption-based accounting from production-based accounting reinforces the standard view that wealthy countries are largely responsible for emissions (with the exception of Russia and Canada, where it cuts the other way).

Intensity

A final possible measure of responsibility for emissions is intensity, which is the emissions necessary to produce a dollar of GDP. The notion might be that more responsible nations produce wealth with fewer externalities. Table 6 is a list of the top 20 countries by intensity of their emissions. There are no rich countries or Annex I countries on this list. In fact, the list is dominated by African countries and by very poor countries.

Table 6: GHG Intensity of Economy in 2005

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>tCO2e /Mill $</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central African Republic</td>
<td>22,691.30</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Congo, Dem. Republic</td>
<td>16,821.60</td>
<td>73.9</td>
</tr>
<tr>
<td>3</td>
<td>Zambia</td>
<td>11,902.60</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>Bolivia</td>
<td>5,853.20</td>
<td>25.1</td>
</tr>
<tr>
<td>5</td>
<td>Cambodia</td>
<td>5,300.00</td>
<td>22.7</td>
</tr>
<tr>
<td>6</td>
<td>Papua New Guinea</td>
<td>4,607.00</td>
<td>19.6</td>
</tr>
<tr>
<td>7</td>
<td>Mongolia</td>
<td>4,544.50</td>
<td>19.3</td>
</tr>
<tr>
<td>8</td>
<td>Solomon Islands</td>
<td>4,315.50</td>
<td>18.3</td>
</tr>
<tr>
<td>9</td>
<td>Turkmenistan</td>
<td>4,043.10</td>
<td>17.1</td>
</tr>
<tr>
<td>10</td>
<td>Myanmar</td>
<td>3,522.20</td>
<td>14.8</td>
</tr>
<tr>
<td>11</td>
<td>Uzbekistan</td>
<td>3,454.00</td>
<td>14.5</td>
</tr>
<tr>
<td>12</td>
<td>Cameroon</td>
<td>3,061.80</td>
<td>12.7</td>
</tr>
<tr>
<td>13</td>
<td>North Korea</td>
<td>2,959.30</td>
<td>12.3</td>
</tr>
<tr>
<td>14</td>
<td>Guyana</td>
<td>2,923.40</td>
<td>12.1</td>
</tr>
<tr>
<td>15</td>
<td>Indonesia</td>
<td>2,895.60</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>Honduras</td>
<td>2,790.80</td>
<td>11.5</td>
</tr>
<tr>
<td>17</td>
<td>Zimbabwe</td>
<td>2,737.60</td>
<td>11.3</td>
</tr>
<tr>
<td>18</td>
<td>Tanzania</td>
<td>2,722.30</td>
<td>11.2</td>
</tr>
<tr>
<td>19</td>
<td>Guinea-Bissau</td>
<td>2,702.70</td>
<td>11.1</td>
</tr>
<tr>
<td>20</td>
<td>Nauru</td>
<td>2,432.30</td>
<td>9.9</td>
</tr>
</tbody>
</table>
The United States is 127th, with an index of 1.5, while the Germany is 157th, at less than 1/100 of the intensity of the Central African Republic.²⁹

D. Reconciling the numbers: the ethics of aggregation

The central observation from the above data is that the same information can produce startlingly different impressions depending on the presentation. Many studies claim to show that wealthy countries, particularly the United States, are responsible for the overwhelming majority of emissions to date. To some extent, this is true: wealthy countries have been large emitters by almost any measure (other than intensity). On the other hand, developing nations are equal contributors on many other measures. Poor countries combined currently emit more total greenhouse gases than wealthy countries; per capita emissions are dominated by small countries and by Arab countries. The question is what accounts for these differences and which method of looking at the data is correct?

There are two main reasons for the differences in the data. The first is breadth of the measures used. Developed nations have higher emissions from energy use and lower emissions from land use change, so measures that exclude land use change will tend to show higher relative emissions from developed nations. There is, however, no reason why a measure of responsibility for climate change should be limited to only some types of emissions. The only basis for using narrow measures is the lack of available or reliable data for broad measures. Where data is lacking, however, the correct conclusion is that we cannot calculate responsibility, not that we can pinpoint responsibility based on incomplete data.

The second reason is that the different measures use different aggregations. With almost 200 nations, we cannot easy present data for each country in an understandable format. Instead, the data is usually

²⁹The IPCC has an intensity chart which shows somewhat different results (Figure 1.4b). Using the same aggregations as the IPCC, the CAIT data produces a different ordering of emissions intensities with the Middle East, for example, having the sixth highest intensity while the IPCC puts it at third. The particular countries at the top of the list change if we focus only on energy intensity as opposed to greenhouse gas intensity, but the basic nature of the conclusions does not change: the energy intensity list is dominated by (different) poor countries; wealthy countries move up but are still nowhere near the top: The US moves up to 56 and EU to 93.
aggregated so that it can be understood. The IPCC chart reproduced above aggregates all of the countries in the world into ten regions. The result is that small, high per capita emitting countries get lost in the data because they are aggregated with many other low emitting countries. Poor countries that have high emissions from land use are combined with low emitting countries in the same region so they do not show up. The per capita numbers in Table 4 had no aggregation – it is a list of individual countries. This means that relatively small countries, countries that are unlikely to play a significant role in climate negotiations, dominate the list. The table emphasizes variance by individual countries rather than overall trends. The conclusions I presented on total emissions by rich and poor countries also aggregated the information. The cut off between rich and poor was arbitrary. The IPCC aggregated by geographic regions. Rich countries, however, are concentrated in just a few regions while poor countries are spread out, so this aggregation also potentially skews the results. Any method of presenting the data must be defended.

The question is whether there is any ethical theory for aggregation. Is it appropriate to combine countries together regardless of their relative emissions as was done in the IPCC chart? Should Brazil’s high per capita emissions be offset by Chile’s low per capita emissions? Is it appropriate to treat wealthy nations as one group and all other nations as another group as I did in summarizing the data in Figure 2?

Some aggregation will be necessary in presenting and understanding the data. The goal of a good presentation of data is to enable the reader to understand key facts or trends in the data while ignoring noise. Aggregation of many data points into more easily understood forms can be helpful. There is, however, no justification for aggregation that hides key facts or that presents data in a way that fails to illustrate the underlying information. That is, beyond its role in helping the reader understand the data, there is no ethical theory for aggregation.

The aggregation in the IPCC report cannot be supported based on theories of good presentation of information. Treating all of the Middle East as a single data point hides the very high per capita emissions of Qatar, the UAE, and Kuwait. Treating all of Latin America as a single data point hides the high per capita emissions of Bolivia, Brazil, and Venezuela. The wide variations in emissions get washed out in the
averages of groups that are essentially randomly chosen because the happenstance of geography rather than an underlying theory of responsibility. Similarly, the decision in the IPCC chart to separate poor countries into many regions while aggregating wealthy countries into fewer regions means that the reader does not get a sense of the underlying data. If instead, we aggregate all poor countries into one group and all rich countries into another, we get a very different picture of the data than if we use the 10-region aggregation used by the IPCC.

Data on past emissions are used to support claims about obligations; these claims are based on ethical theories. Even a cursory examination of such ethical theories shows that aggregation is inappropriate. For example, we might look at past emissions data to establish a claim about culpability for bad actions. A nation is not less culpable (to the extent nations can be culpable at all, an issue put aside here) because its neighbor behaved well. The same problem arises with theories of distributive justice: aggregation by geographic region cannot be justified based on distributive theories.

Compete disaggregation of the data would require us to look at individuals. This is impossible. Nations, however, are good level of aggregation for examining the data. Nations are the likely actors in any climate arrangement. Moreover, nations can control the distribution of costs and benefits to their own citizens. For example, if a nation has a high emitting region and a low emitting region and must incur significant costs to reduce emissions, it can internally allocate those costs as it sees fit. Therefore, nations seem like a convenient level of aggregation. It is, however, hard to see any reason for aggregation beyond the national level unless we do not lose any significant information by doing so. The tables above show that we do lose important information.

One argument for aggregation by region is that what shows up in the disaggregated data given above is that some relatively small countries have high per capita emissions. This, it might be argued, is irrelevant; these countries are unlikely to have any role in a climate treaty. Aggregation, therefore, is not hiding important information.

This conclusion, however, would not be correct. Theories are responsibility that are based on per capita do not distinguish between
large countries and small countries or rich and poor countries. The fact that a country happens to have a small number of individuals or is poor says nothing about its culpability for its actions.

We can also redo the list to cover only large emitters to see how much such an approach would change the conclusions. To get a sense of this, take modest, but not the very smallest, countries which are obligated to reduce emissions under the Kyoto Protocol. Presumably it is worth including countries of this size and larger in a new climate change agreement. Norway’s emissions are about 52 CO$_2$-eq. (There are Annex I nations with much lower emissions, such as Luxembourg and Lithuania.) If we use this as an arbitrary cut-off, the top per capita emitters in 2005 are as follows in Table 7:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>MtCO2e/Person</th>
<th>MtCO2e % of Total</th>
<th>$ Per Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Qatar</td>
<td>66.6</td>
<td>59</td>
<td>63,588</td>
</tr>
<tr>
<td>2</td>
<td>United Arab Emirates</td>
<td>38.2</td>
<td>157</td>
<td>51,586</td>
</tr>
<tr>
<td>3</td>
<td>Kuwait</td>
<td>34.8</td>
<td>88</td>
<td>45,152</td>
</tr>
<tr>
<td>4</td>
<td>Australia</td>
<td>27.4</td>
<td>559</td>
<td>32,175</td>
</tr>
<tr>
<td>5</td>
<td>Canada</td>
<td>24.9</td>
<td>804</td>
<td>35,660</td>
</tr>
<tr>
<td>6</td>
<td>United States</td>
<td>23.1</td>
<td>6814</td>
<td>42,672</td>
</tr>
<tr>
<td>7</td>
<td>Bolivia</td>
<td>22</td>
<td>202</td>
<td>3,857</td>
</tr>
<tr>
<td>8</td>
<td>New Zealand</td>
<td>19.1</td>
<td>79</td>
<td>24,801</td>
</tr>
<tr>
<td>9</td>
<td>Turkmenistan</td>
<td>18.9</td>
<td>91</td>
<td>5,141</td>
</tr>
<tr>
<td>10</td>
<td>Venezuela</td>
<td>16.9</td>
<td>450</td>
<td>10,767</td>
</tr>
<tr>
<td>11</td>
<td>Ireland</td>
<td>16.7</td>
<td>70</td>
<td>39,671</td>
</tr>
<tr>
<td>12</td>
<td>Saudi Arabia</td>
<td>16.3</td>
<td>377</td>
<td>21,372</td>
</tr>
<tr>
<td>13</td>
<td>Brazil</td>
<td>15.3</td>
<td>2842</td>
<td>8,745</td>
</tr>
<tr>
<td>14</td>
<td>Central African Republic</td>
<td>14.6</td>
<td>61</td>
<td>658</td>
</tr>
<tr>
<td>15</td>
<td>Russia</td>
<td>14</td>
<td>2005</td>
<td>12,797</td>
</tr>
<tr>
<td>16</td>
<td>Malaysia</td>
<td>14</td>
<td>358</td>
<td>12,205</td>
</tr>
<tr>
<td>17</td>
<td>Belgium</td>
<td>14</td>
<td>147</td>
<td>32,729</td>
</tr>
<tr>
<td>18</td>
<td>Czech Republic</td>
<td>13.9</td>
<td>142</td>
<td>21,674</td>
</tr>
</tbody>
</table>
Some of the very small nations, like Brunei and Luxembourg drop off of the list and the United States moves up from 10th to 6th. The qualitative nature of the list, however, does not change: many developing countries are in the top 20 including such countries as Brazil and Malaysia. Changing the arbitrary size cut off used to create this table does not change the basic results unless a very high cut off is used.

A final reason to include many relatively poor or small countries is that a workable climate treaty cannot afford to leave many nations out. The reason is that low cost abatement opportunities are spread throughout the world. If we leave out smaller nations, we lose the benefit of whatever low cost reductions are within their borders. Moreover, heavy emitting industries would have an incentive to shift to these nations, creating so-called carbon leakage. In a recent study, researchers using a large scale model of the climate and the economy developed at MIT modeled a worldwide cap and trade regime designed to reach a reasonably ambitious carbon concentration goal by 2050 (450 ppm of CO$_2$eq).\footnote{Henry D. Jacoby, Mustafa H. Babiker, Sergey Paltsev, and John M. Reilly, Sharing the Burden of GHG Reductions, The Harvard Project on International Climate Agreements, Discussion paper 08-09 (October 2008), available at www.belfercenter.org/climate} Leaving out even a small number of regions with comparatively low emissions made it not only difficult but impossible to reach this goal. In one case, leaving out the Middle East and Africa from the cap and trade regime made it impossible to limit concentrations to the desired goal even if all other nations reduced emissions to the maximum extent possible within the model. The small nations that show up on these lists most likely have to be included in a carbon reduction regime.

One way to get a handle on the relationship between wealth and per capita emissions is to compute the correlation. Figure 4 below does this for 2000, looking at the six Kyoto gases plus land use change. As be seen, there is a positive relationship, but a low R2 and many outliers.\footnote{If we look at a broader measure of emissions, the slope of the line of best fit goes down and its y intercept goes up, reducing the effect. We should not take the zeros in front of the slope (the 0.0004) as meaningful because they are an artifact of the units used to measure income (dollars) and emissions (tons).}
Figure 4

It seems from this chart that the picture is mixed, and the implications for a climate treaty would be similarly mixed. Emissions correlate with wealth. Nevertheless, consistent application of this theory of responsibility would mean that many relatively poor countries would be faced with very large climate obligations. For example, suppose that the sustainable level of emissions for the short-term is 5 tons per person per year (which is likely below the long-term sustainable level). All countries above the horizontal line at 5 (bolded in the chart) would have a net obligation based on how far above the line they are, and many of these countries are small or poor. On the other hand, there is a clear upward slope to the chart, indicating that wealth correlates with emissions.

II. Theories of Obligation

Most of the literature on past emissions seems to view the relevance of emissions data as obvious. Scientists and economists have been refining the data as if we were to take the resulting numbers literally as a measure of responsibility. One of the claimed virtues of the Brazilian approach is
that it is science-driven and, therefore, provides an objective basis for allocating treaty obligations.\footnote{See La Rovere, de Macedo, and Baumert, note __ at p. 167 (“The proposed approach is science-driven. This is good news as it avoids a burden-sharing scheme based solely on the bargaining power of Parties sitting at the negotiations table.”)}

A claim that one party has an obligation to make a payment to another because of some past action, however, is not a scientific claim. It is an ethical claim and needs to be supported by an ethical theory. In this section I will discuss how theories of responsibility might inform the data.

There are any number of possible ethical theories that might be used. I will focus here on the theories that underlie tort law or analogous damage regimes. Tort law provides the clearest example of where we have been willing to impose an obligation to make a payment based on a harmful action. I am not claiming in any sense that the particular, detailed, legal requirements for tort liability have to be met, and, indeed, they most likely are not – we should be thinking in terms of a climate treaty not a climate lawsuit. Instead, the goal is to look at a developed body of thinking in an analogous context to see what has been required.

As noted in the introduction, there are two distinct rationales for tort liability: responsibility or corrective justice theories and incentive-based theories.\footnote{There are long and heated debates about whether theories of responsibility or more generally corrective justice theories are viable or whether tort-like obligations should instead be based entirely on consequentialist, incentive-focused theories. For an extensive criticism of the use of corrective justice and similar notions in tort law, see Louis Kaplow and Steven Shavell, \textit{Fairness versus Welfare} p. 85-154 (2002). Corrective justice intuitions seem to be behind many of the claims about responsibility for climate change and the use of past emissions data. Therefore, I examine these theories without endorsing them here.} Responsibility theories focus on compensating victims of wrongful actions. Incentive-based theories focus on internalizing costs that dangerous acts impose on others. I will examine both theories to see how each would use emissions data. I will start with responsibility-based theories as these seem to be the focus of most of the claims. After discussing these, I turn to incentive-based theories.

\textit{A. Fault and Strict Liability}

\textit{Responsibility and Fault.} Most notions of responsibility require fault. This is deeply embedded in tort law. Civil law regimes have a very strong
fault rule, stemming back to the Napoleonic Code.34 Common law regimes are more mixed, but are best described as imposing fault or negligence in standard cases with specified exceptions where fault is not required.35

The connection of responsibility and fault can be traced back to Aristotle, who argued that we can assign responsibility only for voluntary actions where the actor is aware of the harm he is bringing about. More modern approaches go beyond awareness to negligence. Regardless, fault is said to be required because only fault distinguishes pure acts of nature from moral, human conduct. As summarized by one prominent corrective justice scholar, “A right to repair in corrective justice, [therefore] only arises if the conduct that led to the harm in question was either faulty, or in some appropriate sense fault-like.”36

If fault is the central notion in assigning responsibility, the emissions data we have to date provides nothing like the sort of information we would need. Moreover, no data would likely be sufficient to perform this sort of calculation. To measure faulty emissions, we have to determine, whether each unit of emissions at each point in time was wrongful. For example, we might think that luxury consumption – say heated swimming pools, oversized vehicles, and McMansions – is wrongful but necessary consumption such as heating homes in frigid climates is not. We might think that in a large nation, some minimum emissions from transportation are not wrongful but excessive emissions are wrongful. Modest meat consumption might be okay but excessive meat consumption not.

The difficulties are immediately apparent: determining fault requires detailed judgments about a vast number of decisions made every day by each individual. Even if we had the capacity and the information necessary to make these judgments, we would likely disagree about what

\begin{footnotesize}
34 For a summary of civil law tort regimes in the environmental context, see, Mark Wilde, Civil Liability for Environmental Damage, A Comparative Analysis of Law and Policy in Europe and the United States (2002). See also see Andre Tunc, The Twentieth Century Development and Function of the Law of Torts in Franc, 14 International and Comparative Law Quarterly 1089 (1965).
\end{footnotesize}
particular conduct is wrongful. How many square feet of living space is allowable for each individual in a family? How far from work or school is it permissible to live? What type of car can you drive? Is eating meat unethical (because of the greenhouse gas emissions from livestock, not animal welfare)? Is it ethical to live in an unduly cold or hot climate or must all Americans move to San Diego and Canadians to, well, out of Canada? Do these answers change if a country has a natural reserve of some particular type of energy or a natural carbon sink such as a forest? Because almost all activity in a modern economy results in emissions, determining wrongfulness involves judging almost every aspect of everyone’s life. Fault in the climate context is not like a simple case of kicking someone in the shin or driving excessively fast, where we are likely to have shared intuitions about the wrongfulness of the conduct or methods of measuring the costs and benefits. To determine fault on a global scale for pervasive activities that span more than a century is simply impossible. Not only are there overwhelming problems of data, but we simply have no underlying view on most of the conduct we would have to judge. The only way to base obligations on past emissions is to use a non-fault-based theory of obligations.

Strict Liability. Under strict liability, an actor is liable for any harm he causes, even if he is not at fault. Some have argued strict liability is consistent with the principles of responsibility and corrective justice. Liability for harm from environmental damages has to some extent moved away from fault-based regimes, toward strict liability. In the EU, this move has largely been under the rubric of the Polluter Pays Principle. The rationale was that it was too difficult to prove fault in the environmental context because of the complex processes that are involved (and the polluter has the information about these processes). Moreover, strict

37 There is the entirely separate problem of when we should start counting because of when it was reasonable for individuals to know that carbon-emitting activities harmed the world. Unlike some of the activities listed in the text, it seems likely that we might agree on an appropriate date and once a date is set, adjusting the calculation to start at that date is not particularly hard.

38 CAIT attempts to provide some of the relevant data. For example, CAIT allows us to rank countries by heating and cooling degree days, by the size of their populated regions, by their income, and by their access to various sources of fuel. The authors want to allow users to make the necessary sorts of adjustments to the data to reflect fault. But the game is hopeless. We cannot make judgments of the sort needed.

39 Perhaps the best that we could do might be as follows. Define fault as all emissions in excess of those under an optimal carbon tax. We would then have to calculate the optimal carbon tax at each point in time and the elasticities of major emitting activities. Given this price change (from the tax) and the elasticities, we could estimate emissions under the tax and then compare these estimates to actual emissions. The difficulties of such a calculation are apparent.

liability was thought to better provide compensation to victims of pollution and to impose the risk from pollution on the party that can control it.41

The shift to strict liability in the EU, however, has been halting and limited, and in many versions, the Polluters Pay Principle has been implemented as a fault regime, not a strict liability regime. This can be seen in its most recent and comprehensive manifestation, the EU Environmental Liability Directive (the ELD), adopted in 2004. It explicitly states that it adopts the Polluters Pay Principle and provides a specific set of rules for its implementation. It provides for strict liability for a specified class of particularly risky activities such as waste management operations or the storage of dangerous chemicals. Even for this class of activities, individual member states can provide exemptions, such as if the polluter can demonstrate that the activities were not considered likely to cause damage based on knowledge at the time of the activity (i.e., a fault-like theory). For all other covered environmental harms,42 however, the ELD requires fault and, moreover, limits liability to harms to specified items, such as harm to protected species and natural habitats. At least in this implementation, the Polluters Pay Principle is not a general strict liability principle.

The ELD has not yet been adopted by many member states, each of which has its own environmental and tort laws. Many of these states retain the core of fault-based civil liability regimes, although some have enacted strict liability regimes for specified environmental harms. For example, Germany has a strict liability regime for damage caused to water and soil as well as a selected list of sites.43 The UK imposes strict liability for designated nature protection sites. Brazil imposes strict liability for environmental harms, although it is not clear how strongly it is enforced.44 There are scatterings of strict liability, so the idea of using strict liability notions in the climate context would not be unheard of.

41 For a history of the development of the Polluters Pay Principle, see Nicolas de Sadeler, \textit{Environmental Principles, From Political Slogans to Legal Rules} (2002).
42 The ELD does not cover environmental harms that result in diffuse harms, such as those from many types of air pollution.
44 Section 14.1 of the National Environmental Policy Act, Law 6938/81.
Common law regimes impose strict liability in circumstances that are similar to where the ELD would impose strict liability. For example, common law regimes may impose strict liability for activities that are very likely to impose harm, such as conversion, animals, abnormally dangerous activities, and nuisances. These are not exactly the same as the strict liability categories in the ELD but the underlying intuition is similar: we impose strict liability where, if there is harm, it is very likely there is also fault.

The United States has a separate environmental law layered on top of the common law. As a general matter, American environmental law has not imposed strict liability. Most of the time, it uses command and control regulations which simply prohibit certain activities. The most important case of strict liability (in fact, the only major example) is CERCLA (i.e., Superfund).45 For a variety of reasons, however, CERCLA has not been successful, at least by many measures. It is a doubtful precedent on which to base a climate change treaty.

From this brief survey, we can see that there is some precedent for using a strict liability standard in contexts similar to climate change, it is also quite limited. Even in environmental contexts, most countries most of the time require fault.

Suppose that we get over the hurdles for using a strict liability approach for measuring responsibility. The issue is then substantially simpler because we no longer have to determine fault. Nevertheless, there are still a number of problems. One problem is that we would have to calculate the net harm from emissions – the harm from temperature increases less any benefits from the emitting activity realized by the rest of the world. There are many external benefits that would have to be taken into account.

As an example, consider the Haber-Bosch process. This is a process, invented in Germany just prior to World War I that fixes nitrogen to produce ammonia. The ammonia can be used as fertilizer or a component of fertilizer. The resulting fertilizer is responsible for sustaining a

45 One could argue that the SOx trading regime is a strict liability regime as it imposes caps on emissions entirely without regard to fault. The permits, however, were handed out based on historical emissions, so the regime did not impose liability for past actions as is suggested in the climate context.
substantial portion of the world’s population. Although the invention was patented and the inventors paid, there is no way that they could have captured all but a tiny fraction of the resulting benefits. The same process, however, was also used by Germany to generate munitions, and Germany may not have entered into World War I without this source of supply (or might have ended the war years earlier). There is no realistic way to measure the net benefits and costs of inventions of this sort, inventions that would be unlikely to have been found but for industrialization and the resulting emissions.

A second problem is the time period over which we measure emissions. The time period will be critical. If we go back long enough, for example, the deforestation numbers change dramatically because areas that deforested long ago would be assigned the resulting emissions. Similarly, counting industrial activity that occurred long ago produces different results than using a shorter time period. The precedent for such an approach – fully retroactive strict liability – is very limited; strict liability regimes are not generally retroactive. For example, the strict liability portions of the ELD are prospective only. The intuition is that if you are going to be held liable for harms which are not your fault, at a minimum, you should be told in advance.

A third problem is how we should treat population growth. If we use a per capita measure, countries with rapid population increases look better (unless emissions increase just as rapidly). It is not clear, however, why we would want to treat countries which have increased their populations rapidly as behaving better, as less responsible for climate harms. If we are not going to do so, however, we would need some theory for allowable population growth, and then use this number as the denominator in a per capita emissions calculation. This is infeasible. Similar arguments apply to immigration.

There are many other problems with applying a strict liability approach. The analysis above, however, should be sufficient to demonstrate that even if we eliminate considerations of fault, the problem of determining responsibility remains formidable.

The connection between injurer and victim. Regardless of whether we apply strict liability or a fault-based rule, responsibility-based arguments
for tort liability almost inevitably require a close connection between the injurer and the victim. “In every account of corrective justice, there is presumed to be a relationship between the parties that makes the claims of corrective justice appropriate to them – and not to others.”

In the climate change context, there is only a very loose connection between the injurers and the victims. The injurers are the set of people who have engaged in activities that result in carbon emissions in the past. This is a large and diverse group: some are rich, some are poor; some can easily avoid emitting greenhouse gases, some cannot; some are alive, some are dead. Standard notions of responsibility for bad acts usually reject collective responsibility; we have to assign responsibility to particular individuals. Similarly, the victims are dispersed and most are not yet alive (because most of the harm will be in the future).

This problem has already been noticed and written about. It is closely related to the problem of reparations, where claims of collective responsibility are also apparent. The conversation so far captures the issues well, so I will not add anything here.

Distributive Effects. The data above show that many poor countries have contributed significantly to climate change. If these poor countries are to be held responsible on the same basis as rich countries, the resulting obligations would likely cause significant hardship. Many of the high emitting poor countries simply do not have the resources needed to pay for their share of harm. Asking them to pay for even a modest share of the harm that they have caused might have terrible consequences.

I have argued elsewhere that we should separate distributive issues from a climate change. The basic reason is that redistribution of wealth is best done through mechanisms carefully designed to be most effective. Although we remain uncertain what the most effective mechanisms are for helping developing countries, an instinctive tying of a climate change

48 Overall, imposing liability based on past emissions would be progressive because there is a positive correlation between emissions and income. The problem arises because of the high variance in emissions within poor countries.
49 See Eric Posner and David Weisbach, Climate Change Justice (2010).
treaty to redistribution is unlikely to be one of those mechanisms. Moreover, it is difficult to get wealthy nations to agree to substantial redistribution – we give a miniscule fraction of our GDP in foreign aid. Tying a climate treaty to an order of magnitude or more increase in foreign aid is not a good method of achieving a treaty. Climate change is serious enough that we should not attempt to cure North-South problems at the same time.

To the extent people believe this argument, the bad distributive effects of using responsibility as the basis for a treaty will not matter. Many people, however, would be very troubled by such distributive effects. It is not clear, however, whether notions of responsibility can be adjusted to take the distributive effects into account. Notions of corrective justice typically make no exception for income levels or poverty. Tort law imposes liability on negligent injurers regardless income: if you negligently hit me with your car, you are liable even if you are poor. Notions of fault are unlikely to exempt poor countries; emissions from poor countries are often the result of highly wasteful deforestation, activities that not only result in climate change but also result in a host of other environmental ills and yet fail to produce significant benefits. If anything, high-emitting poor countries are more at fault than rich countries because their actions cause harm while producing almost no benefit.

The Brazilian proposal, in its initial form, would not have applied to developing countries; Brazil was proposing its allocation method only for countries obligated to reduce emissions under the Kyoto Protocol, which by and large are richer than other countries. Brazil, therefore, implicitly included a distributive component. The logic, however, is unclear. If we are to use responsibility as a measure, there is no reason to exclude any responsible party. If the arguments are based on distributive concerns, it is not clear how responsibility fits.

Measuring harm for ongoing acts. The final problem with applying notions of responsibility within a climate context is that it is not clear what role it should play when the harm is ongoing. In the usual case, X kicks Y in the shin, X is responsible and pays Y damages. Or in the environmental context, X emits a pollutant which causes some sort of harm; X must pay for the harm and stop emitting the pollutant. In the climate context,
however, we – almost all individuals and all nations around the globe –
will continue emitting the pollutant for the time being and it is not clear
that we will ever be able to completely stop emitting; even if we had an
abundant carbon-free source of energy, agricultural activities such as
livestock farming results in emissions, and we are not likely to find
methods that do not.

Continuing emissions might not be a problem if emissions in the past
predicted emission in the future because future actions would not change
the relative levels of responsibility and we could use past data as a going
forward measure. Those responsible for emissions, however, will change
over time with developing countries likely becoming large emitters in the
future. If we were in 2050 looking back, we would very likely have a
different picture of responsibility than we do in 2008.

The Brazilian proposal, as well as most other less formal discussions,
seems to want to take a snapshot at a fixed point in time – when the treaty
is negotiated or signed – and assign responsibility on that basis.
Obligations to pay for emissions reductions would be correspondingly
assigned. The obvious problem with this regime is that it ignores
responsibility for future emissions. If X emits 100 units in period 1 and Y
emits 100 in period 2, we should not assign responsibility forever more at
the end of period 1.

It is not clear, however, how to fix this. We would have to adjust the
assignment of responsibility for emissions at regular periods, so that if a
nation emits a lot in, say, the next five years, it gets a higher obligation to
abate than otherwise. Once a treaty is signed, however, if nations comply
with the treaty they would be emitting only as much as they are allowed
to under an international agreement. To the extent that responsibility
includes any notion of fault, it would hard to argue that they would be at
fault in such a case.

Even if we use strict liability notions, the adjustments would be
difficult. A nation that is allowed high emissions in one period would then
be responsible for a greater share of subsequent emissions and get a lower
share in the next period. The optimization problem – what is the right
amount in any given period for a nation – would be highly complex.
Notions of responsibility work best for past acts. We can imagine applying these notions to require past emitters to pay a fixed, lump sum amount, say as transfers of technology to lower-emitting countries. As an ongoing matter, however, it does not seem workable.

B. Incentive-based approaches

An alternative basis for tort obligations is to force actors to internalize harms from risky behavior. Tort liability, under this view, substitutes for a Pigouvian tax. For example, suppose an actor engages in risky conduct which exposes third parties to harm. A Pigouvian tax on the conduct would equal the expected harm from the conduct, forcing the actor to take all costs into account. If we cannot observe the riskiness of an activity in advance, we cannot impose such a tax. For example, we could not easily impose a tax on risky driving. If we instead impose an obligation to pay for any harm caused, we achieve the equivalent result. A large body of theory examines and develops tort law from this perspective.\(^50\)

If we take this incentives-based approach, we get very different answers than if we take a corrective justice, responsibility-based approach. As a general matter, an incentives-based approach cares only about future behavior – incentives cannot affect the past. On a going forward basis, this involves some sort of price on carbon, whether from a tax or a cap and trade regime. Nevertheless, there is some role for a backward looking treaty under an incentives-based approach. In particular, the expected outcome of a treaty negotiation can affect behavior between now and when a treaty is signed. For example, if a treaty assigns emissions rights based on emissions as of the time of the treaty, it creates an incentive to increase emissions between now and when the treaty is signed (so as to increase your country’s allocation). This is why most negotiations, including those behind the Kyoto Protocol, look to a base year for determining emissions reductions that precedes the negotiations. The same idea holds more broadly, for example for investments in low carbon technology (these need to be rewarded) and for imposing unreasonable delays in the negotiating process (these need to be punished). Under an incentives-based approach, a treaty should be look to behavior between

\(^{50}\) See Steven Shavell, Liability for Accidents, in Handbook of Law and Economics (A. Mitchell Polinsky and Steven Shavell, eds. 2007).
now and when the treaty is signed, rewarding good behavior and punishing bad behavior. Although nominally backward looking, doing so has good going forward incentive effects.

We might be able to push this logic further and look at past behavior. The idea would be that although we cannot affect past behavior, situations similar to climate change might arise – other international negotiations – where a climate change treaty might serve as precedent. If a climate change treaty punishes bad behaviors in the past, actors anticipating a future, analogous negotiation in a different context might anticipate a similar approach and, therefore, not engage in the bad behavior (or engage in less bad behavior). That is, imagine an actor engaging in an action now that we are not sure is harmful, but might be. Even if there is no liability attached to the conduct now, if we later learn that it is harmful and impose liability retroactively, and the actor expects this, the actor has an incentive now to internalize the possible harms. A climate treaty that looked to past emissions might possibly increase the expectation that other treaties would reach back and, therefore, create good incentives now.

The problem with applying this logic to long-past emissions is that it is doubtful that doing so would create very much an incentive for other, unrelated conduct. There are not, we hope, many problems like climate change where the climate change precedent would change expectations. This is particularly true because liability would not fall directly on those who emitted – the set of people living in, say, the United States now are different than those living in 1950 or 1850. That is, the incentive effects of a backwards looking climate regime seem minimal.

An incentives-based approach, one that focuses on getting a treaty signed and creating the incentives on actors needed to reduce emissions, would focus on recent behavior rather than on long-past emissions. There would still be a role in a treaty for imposing responsibility for reductions based on bad behavior, but it would involve bad behavior now, not bad behavior in 1950.

III. Taking stock

There are two key lessons. The first is that the data on past emissions presents a mixed picture, and it does not support the claim that the wealthy countries are primarily responsible for past emissions. Under almost any measure, responsibility is spread widely with a positive correlation between emissions and income. That is, wealthy countries tend to emit more but there is wide variance and many poor countries are high per emitters.

The second is that theories of traditional responsibility, those that require fault, require far more complex considerations than the data support or are ever likely to support. Activities that result in emissions are pervasive, and we cannot decide which activities are faulty and which are not. It is possible that we could base responsibility on strict liability, but even then there are problems: we would still not have a close connection between those responsible for emitting and those who end up paying for emissions reductions or those who are relieved of paying for emissions reductions and those who benefit. Moreover, strict liability would likely result in poor countries having large obligations and additional theories would need to be tacked on to prevent the resulting hardship. Finally, even if this could all be worked out, it is not clear how the notion would be applied as part of an ongoing treaty as opposed to a one-time claim for past wrongs.

Incentive-based approaches fare better – they imply that we should mostly care about preventing delay, or taking advantage of natural delays by increasing emissions in the meantime. Essentially, in allocating emissions reductions obligations, we should not give benefits to those who increase emissions between now (or possibly back for some fixed time period) and an eventual treaty. Similarly, we might want to reward those who have reduced emissions in the interim, invested in low carbon technology or engaged in similar good behaviors.

Ultimately, if we can achieve a climate agreement, obligations to reduce emissions will be a result of hard negotiations. There is no larger power that can impose obligations based on notions of responsibility so arguments about responsibility at best help with moral suasion. Notwithstanding problems with these notions in the climate context, it is
extremely likely that they will continue to be part of a negotiation. There is nothing wrong with this - negotiators will use whatever tools they have. But if we try to take them seriously rather than as mere negotiation points, their application presents many problems. The Brazilian proposal or similar arguments about responsibility cannot play the hoped-for role of an objective scientific method of determining treaty obligations.