COUPLING CO$_2$ CAPTURE AND
STORAGE WITH COAL
GASIFICATION: DEFINING
“SEQUESTRATION-READY” IGCC

Jennie C. Stephens

Energy Technology Innovation Project
a joint project of the
Science, Technology and Public Policy Program
and the
Environment and Natural Resources Program
Belfer Center for Science and International Affairs

2005 - 09
SEPTEMBER 2005
Coupling CO$_2$ Capture and Storage with Coal Gasification: Defining “Sequestration-Ready” IGCC

Jennie C. Stephens
Energy Technology Innovation Project, Harvard University

May 2005
Citation
This paper may be cited as: Stephens, Jennie, “Coupling CO$_2$ Capture and Storage with Coal Gasification: Defining “Sequestration-Ready” IGCC”, BCSIA Discussion Paper 2005-09, Energy Technology Innovation Project, Kennedy School of Government, Harvard University, 2005. Comments are welcome and may be directed to Kelly Sims Gallagher at BCSIA, Kennedy School of Government, Harvard University, 79 JFK Street, Cambridge, MA 02138.

The views expressed within this paper are the author’s and do not necessarily reflect those of the Science, Technology, and Public Policy Program, the Belfer Center for Science and International Affairs, or Harvard University. This paper is available at www.bcsia.ksg.harvard.edu/energy.

The Energy Technology Innovation Project
The overarching objective of the Energy Technology Innovation Project (ETIP) is to determine and then seek to promote adoption of effective strategies for developing and deploying cleaner and more efficient energy technologies in three of the biggest energy-consuming nations in the world: China, India, and the United States. These three countries have enormous influence on local, regional, and global environmental conditions through their energy production and consumption.

ETIP researchers seek to identify and promote strategies that these countries can pursue, separately and collaboratively, for accelerating the development and deployment of advanced energy options that can reduce conventional air pollution, minimize future greenhouse-gas emissions, reduce dependence on oil, facilitate poverty alleviation, and promote economic development. ETIP's focus on three crucial countries rather than only one not only multiplies directly our leverage on the world scale and facilitates the pursuit of cooperative efforts, but also allows for the development of new insights from comparisons and contrasts among conditions and strategies in the three cases.
Acknowledgements
The author thanks Bill Rosenberg, Mike Walker, John Holdren, Henry Lee, Guodong Sun, and Kelly Sims Gallagher of the Energy Technology Innovation Project for guidance on this project. In addition, discussions with many including David Hawkins, Bob Williams, Tom Kreutz, Rob Socolow, and Norm Schilling contributed to this work. Financial support for this project is gratefully acknowledged from the Energy Foundation, the Hewlett Foundation, the Packard Foundation, the Winslow Foundation, and the endowment of the Belfer Center for Science and International Affairs at the Kennedy School of Government at Harvard.
Abstract
Carbon dioxide (CO$_2$) can be separated and captured more efficiently and at a lower cost from an integrated gasification combined cycle (IGCC) coal generation power plant than from a conventional pulverized coal power plant. This advantage for addressing CO$_2$ emissions is one important reason that the National Commission on Energy Policy has recently called for increased federal funding to encourage the construction of IGCC power plants that are “sequestration-ready”. An important outstanding policy question is to what extent initial commercial IGCC power plants supported by federal funds should be required to prepare for, pre-invest in, or install and operate CO$_2$ capture equipment, i.e. what does the term “sequestration-ready” mean for an initial fleet of IGCC power plants? Adding CO$_2$ capture capabilities to an IGCC power plant is not a simple end-of-pipe modification, so planning for the addition of this capability is appropriate. Without any current regulatory or economic incentives for power plants to capture and store CO$_2$, however, the appropriate extent of this sequestration-ready requirement is unclear. This paper assesses a spectrum of progressively more involved potential requirements for incorporating consideration of CO$_2$ capture and storage technology in the design of new IGCC power plants.

This paper was presented at the Fourth Annual Conference on Carbon Capture and Sequestration DOE/NELT, May 2-5, 2005.
1. Introduction

Among the various environmental concerns associated with coal-fired power plants, CO₂ emissions are viewed by many as the most critical because CO₂ is the dominant greenhouse gas contributing to climate change. Coal combustion currently produces 34% of the global emissions of CO₂, and coal fired power generation emits more CO₂ per unit of energy than any other power generating process. Although the US has not yet imposed regulatory limits on CO₂ emissions while other industrialized countries around the world have, growing concern over the impacts of climate change has resulted in growing anticipation of US CO₂ regulation. For coal to remain a major source of electricity generation within a CO₂ constrained world, CO₂ capture and storage (CCS) technologies will have to be deployed in conjunction with coal fired power plants. The ease and efficiency of capturing CO₂ from a coal-fired power plant is dependent on the coal technology, and the 50-70 year lifetimes of power plants means decisions made now about what type of coal-fired power plant technology to build will lock-in specific characteristics related to future CO₂ capture capability.

Integrated gasification combined cycle (IGCC) is the coal-fired power plant technology that provides the greatest potential for minimizing emissions associated with using coal to produce electricity. Rather than generating electricity from the heat produced from burning coal, as is done in conventional coal combustion steam-electric power plants, IGCC power plants rely on established chemical engineering technologies to turn the solid fuel into gas (known as syngas). Before the syngas is burned to produce electricity, impurities can be removed from the fuel more effectively and efficiently than can be accomplished in conventional combustion coal plants where post-combustion clean-up is required. This capacity for pre-combustion clean-up of pollutants is one of the technology’s primary advantages over conventional coal combustion approaches. Lower cost and more effective removal of currently regulated pollutants, including particulates, sulphur dioxide (SO₂), and mercury (Hg), is made possible with IGCC, and the technology also allows for lower cost separation and capture of carbon dioxide (CO₂), the dominant greenhouse gas contributing to climate change.

Despite its environmental superiority, IGCC technology is not currently commercially competitive due to higher costs of building an IGCC plant and the additional risk of investing in a technology without an operational history (Campbell et al., 2000; EPRI, 2005; NETL, 2002). Although a handful of IGCC demonstration plants are in operation around the world and several major players in the coal industry have recently announced plans to build IGCC power plants (pending regulatory and financing approval), operational experience from commercial scale facilities is needed for the technology to become competitive.

The National Commission on Energy Policy, a diverse bipartisan group of energy leaders and experts, included in their recent recommendations for U.S. energy policy increased federal funding to encourage the construction of IGCC power plants that are “sequestration-ready” (National Commission on Energy Policy, 2004). This concept of building IGCC power plants that are capable and ready to capture and store CO₂ is also implied in other recent proposals for government support of the deployment of an initial fleet of IGCC power plants (Rosenberg et al., 2004). Given that the relative ease and efficiency of capturing CO₂ from IGCC coal plants is the technology’s most valuable characteristic, an important outstanding policy question associated with current efforts to
promote IGCC technology is to what extent initial commercial IGCC power plants supported by a federal subsidy should be required to prepare for, pre-invest in, or install and operate CO₂ control equipment.

This paper has been developed to outline potential requirements that could be included in the term “sequestration-ready” IGCC. The paper first reviews the technical and economic details associated with adding CO₂ capture technology to the design of an IGCC power plant and then identifies and explores several potential CO₂ capture and storage requirements with varying degrees of integration that could be included in a federal financing plan designed to support IGCC deployment.

2. Technical Details Associated with Coupling IGCC and CCS

Producing power with IGCC technology begins with the conversion of solid fuel (coal, biomass, pet coke, etc) to gas (synthesis gas or syngas) (See Figure 1). The coal is gasified in a gasifier with steam and oxygen; different gasifier designs perform the gasification process at different temperature and pressure conditions (the Texaco/GE gasifier operates at a higher pressure than the E-gas gasifier for example). After gasification the syngas is cooled down generating steam that is sent to the steam turbine to generate some electricity. It is at this point, before the syngas goes to the gas turbine to generate additional electricity, that pre-combustion chemical processes can be inserted to separate and capture CO₂ and other pollutants from the syngas. Once the CO₂ is separated, the gas can be transported to a storage location.

Adding CO₂ capture capability to an IGCC power plant is not a simple end-of-pipe modification; in addition to adding the CO₂ capture equipment changes in other components are required. The removal of CO₂ from the syngas prior to combustion alters the composition of the gas to be burned, increasing the hydrogen content, which changes the design requirements for the gas turbine. In addition, the CO₂ capture process adds complexity to the optimal design of desulphurization and other gas clean-up processes and increases both energy consumption and the amount of coal required to generate the same amount of electricity. For these reasons, an IGCC plant built without consideration for CO₂ capture technology designed to produce power at a minimum cost and maximum efficiency will be different than an IGCC plant designed to incorporate CO₂ capture technology whether the initial plant design includes CO₂ capture equipment or includes measures to prepare for anticipated installation of CO₂ capture equipment in the future.
Figure 1 – Schematic representations of an IGCC coal-fired power plant. The section inside the box in the upper right includes the CO$_2$ capture and storage (CCS) components. This figure demonstrates that adding CCS is not an “end-of-pipe” retrofit, but due to the integrated cyclical design would require modifications of several components. (From Rosenberg, 2004)

Although none of the existing IGCC power plants currently capture CO$_2$, decades of experience has been accumulated with CO$_2$ capture technology in other applications. CO$_2$ is captured in several industrial processes including the production of hydrogen, ammonia, and synthetic liquid fuels as well as in the purification of natural gas (Kohl and Nielsen, 1997). Although the CO$_2$ removed from the gas streams in these industrial processes is generally vented to the atmosphere, the same technology, relying on physical absorption of the CO$_2$ onto a solvent, can be scaled up to capture CO$_2$ from an IGCC power plant that can then be transported to an underground storage location. The quantity of CO$_2$ separated from any one of these industrial processes would be much less than 1 Mt CO$_2$ per year, while a single 1000 MW IGCC plant would emit about 8 Mt CO$_2$ per year, so demonstration of the scaling up of these processes to the power plant scale is required.

Three major technological components need to be added to a basic IGCC plant to allow for the separation and capture of CO$_2$: (1) the shift reactor to convert the CO in the syngas to CO$_2$, (2) the process to separate the CO$_2$ from the rest of the gas stream, and (3) a compressor to reduce the volume of separated CO$_2$ before it can be transported. Additionally, other components will require modification, including the gas turbine that will have to be capable of operating with H$_2$-enriched gas streams, the timing of the
sulphur removal process within the system may be moved to co-capture CO₂ and H₂S, and some scaling up will be necessary to accommodate the larger quantity of coal required to generate the same amount of power as an IGCC plant without CO₂ capture. The additional complexity associated with the additional CO₂ capture components and their integration will also increase the level of operational risk, as malfunctions or disruptions in the CO₂ capture system could impact the productivity of the entire plant.

2.1 The Shift Reactor

The first step in separating and capturing CO₂ from the syngas, which is made up predominantly of carbon monoxide (CO) and hydrogen (H₂), is to convert the CO into CO₂. This is done by reacting the CO with steam in a catalytic reactor in a process known as the water gas shift reaction. When the syngas is funneled into the reactor (or a series of reactors) with steam, the following reaction occurs:

\[CO + H₂O → H₂ + CO₂. \]

(1)

This reaction is exothermic, so the heat produced contributes to the power generated in the steam turbine.

2.2 The Absorption/Separation Unit

After CO is converted to CO₂ and H₂ in the shift reactor, CO₂ would be separated from the rest of the gas by physical absorption. CO₂ separation in industrial processes is generally achieved using one of two methods: (1) chemical absorption with solvents including MonoEthanolAmine MEA using heat induced CO₂ recovery, or (2) physical absorption using solvents including Selexol (dimethly ether of polyethylene glycol) with pressure induced CO₂ recovery. Chemical absorption requires more energy than physical absorption because the chemical bonds are stronger than the weak binding of the CO₂ in physical absorption. While chemical adsorption is the separation method of choice for capturing CO₂ from flue gas from a conventional coal-fired power plant where the CO₂ concentrations are low (9-14%) and the CO₂ partial pressure is low, but the less energy intensive physical absorption method is effective in an IGCC pre-combustion CO₂ separation process because of the high operating pressures and relatively concentrated CO₂ stream (30-32% CO₂ by volume). In physical absorption, once the CO₂ has adsorbed to the solvent, regeneration of the solvent occurs by reducing the pressure in one or more stages until the CO₂ is released. The only energy required for this step is that needed to pressurize the gas. Among the commercially available physical absorption solvent processes, Selexol (dimethyl ether of polyethylene glycol) and Rectisol (methanol) are the most commonly considered, but R&D on other potential solvents with different temperature and pressure requirements is ongoing (IEA, 2004).
2.3 The Compressor
The third additional component is the compressor required to reduce the volume of the CO\textsubscript{2} gas to allow for more efficient and cheaper transportation of the gas to a storage location. When CO\textsubscript{2} is compressed to its dense phase, the volume of gas can be reduced to about 0.1% of the gas volume at standard conditions of pressure and temperature. Compressing gas is energy intensive, so this part of the CO\textsubscript{2} capture system adds significantly to the overall operating costs. Projected capture costs generally include the cost of compressing CO\textsubscript{2} to a pressure suitable for pipeline transport (typically ~14 MPa), but depending on the requirements for transport and the storage location, additional compression could be required (the CO\textsubscript{2} pressure required for storage is correlated with the depth of each specific storage reservoir).

2.4 The Gas Turbine
The gas turbine is the most critical component of an IGCC plant that would require modification if an IGCC plant were to include CO\textsubscript{2} capture technology. The removal of CO\textsubscript{2} from the syngas alters the composition of the syngas to be burned in the gas turbine, creating a CO\textsubscript{2}-depleted and H\textsubscript{2}-enriched gas. Gas turbines are designed for specific gas compositions, so the capability of gas turbines to accept H\textsubscript{2}-enriched gas has been viewed as a potential obstacle to the integration of CO\textsubscript{2} capture technology with IGCC. Most of the new gas turbines (i.e. GE F series), however, are capable of operating with H\textsubscript{2}-enriched fuel; several elements, including the fuel control skid and the combustors, would have to be designed differently or retrofitted to accommodate the H\textsubscript{2}-enriched fuel associated with CO\textsubscript{2} capture (Shilling, 2004). In order to minimize NOx emissions, H\textsubscript{2} concentrations in the gas entering the turbine would likely be kept below 65% because of hydrogen’s high flame temperature. NOx emissions are correlated with flame temperature (Cook et al., 1995), so to keep the temperature down any fuel with a concentration above 65% H\textsubscript{2} would likely be diluted with either nitrogen or steam to get below that percentage.

A challenge for gas turbines operating with gas with high H\textsubscript{2} concentrations is that turbine lifetimes are shortened by the lower BTU content of the fuel that results in higher mass flow rates through the turbine and by the higher water content and the associated increase in heat transfer. Experience operating gas turbines with high H\textsubscript{2} concentrations (52-95% by volume) has been reported (Shilling and Jones, 2003), but this experience is primarily with refinery gas used in older, lower temperature gas turbines. Recent development and testing of current gas turbine technology with H\textsubscript{2} rich gas has, however, increased confidence in turbine performance with high H\textsubscript{2} concentrations (Shilling, 2004).

2.5 Sulphur Removal
In addition to the gas turbine, another major modification associated with adding CO\textsubscript{2} capture would be the sulfur removal process. During gasification, the sulphur contained in coal is converted to H\textsubscript{2}S (hydrogen sulfide) and COS (carbonyl sulfide). In a typical IGCC design without CO\textsubscript{2} capture COS is hydrolyzed to H\textsubscript{2}S in a catalytic bed at about 200°C, and then H\textsubscript{2}S is removed from the syngas using a physical solvent, often Selexol, achieving high removal efficiencies up to 99%. A sulphur recovery unit then uses heat to oxidize the H\textsubscript{2}S to produce elemental sulfur. Given that the same physical
absorption process and the same solvent, Selexol, extract both H$_2$S and CO$_2$ from syngas
several different sequences for H$_2$S removal are possible within a plant that is also
capturing CO$_2$. One option would be to keep the H$_2$S and CO$_2$ removal completely
separate by placing the H$_2$S removal system before the water gas shift reactor. Another
option would be to install a Selexol unit that could co-capture both CO$_2$ and H$_2$S. This
option eliminates the need for the COS hydrolyzation unit because most COS is
converted to H$_2$S in the water-gas-shift reactor (Chiesa et al., 2005).

A recent study estimated that co-capture of H$_2$S and CO$_2$ could increase efficiency
of the plant and reduce overall costs up to 20% (IEA, 2003). Co-capture eliminates the
need for the energy required for the sulphur recovery unit and simplifies the overall
process. The estimated cost savings of co-capture, however, are associated with
corresponding cost increases in transport and storage; the presence of H$_2$S increases the
volume of gas needed to be compressed, transported and stored. In addition, the H$_2$S
reduces pipeline capacity and also requires more advanced and expensive anti-corrosion
materials and coatings. The presence of H$_2$S in the gas stream at the storage stage could
result in the gas stream being classified as hazardous, which would impose different
requirements for injection and disposal in an underground storage formation than if the
gas were pure CO$_2$. Although uncertainties remain about the impacts of co-storing CO$_2$
and H$_2$S in underground geologic formations, this does not seem to be technically
infeasible given the experience with regulated underground injection of waste acid gas
with high concentrations of H$_2$S (Wilson et al., 2003). Whether or not an IGCC plant
with CO$_2$ capture technology is set up to co-capture CO$_2$ and H$_2$S has direct implications
for several other components; with co-separation the shift reactor, in particular, would
have to be effective with “sour” gas, i.e. gas that has not yet been desulphurized.

Another option would be to have two adjacent but separate Selexol units after the
water-gas-shift reactor; the first designed to separate H$_2$S and the second targeting CO$_2$.
To prevent CO$_2$ removal in the H$_2$S Selexol unit, the solvent will have to be pre-loaded
with CO$_2$ in a previous step (EPRI, 2000).

2.6 Scaling Up

Another set of modifications in an IGCC with CO$_2$ capture would involve scaling
up the plant to achieve the same amount of power output. Adding the additional
components for CO$_2$ capture increases both energy consumption reducing the electricity
produced, and also increases the amount of coal required to generate the same amount of
electricity.

2.7 CO$_2$ Transportation and Storage

Once CO$_2$ is captured and compressed, the CO$_2$ needs to be transported to an
appropriate storage location. Injecting captured CO$_2$ into underground reservoirs,
including depleted oil and gas reservoirs as well as saline aquifers, has emerged as the
most promising potential storage strategy (Anderson and Newell, 2004; Bachu, 2003;
Holloway, 1997; IEA, 2004; Stevens et al., 2001). A handful of large-scale underground
CO$_2$ storage demonstration projects are in existence, and CO$_2$ has been injected
underground for Enhanced Oil Recovery (EOR) for decades (Anderson and Newell,
2004; Friedmann, 2003; Wilson et al., 2003). These EOR experiences are also associated
with hundreds of miles of CO$_2$ pipelines for transport. If an IGCC plant were to be
retrofitted for CCS, the proximity to an appropriate storage location will determine the extent and associated cost of transporting the CO₂.

3. Potential Requirements of a “Sequestration-Ready” or “CCS-Ready” IGCC

Although various policy proposals associated with supporting the deployment of IGCC specifically mention or allude to the capability of IGCC power-plants to capture and store CO₂ in the future, the terms “sequestration-ready” or “CCS-ready” have not been defined. Several potential requirements for a “CCS-ready” IGCC plant could be considered for plants built today with anticipation for future retrofit installation of CO₂ capture technology and future CO₂ storage. This discussion assumes that the costs associated with initiating CO₂ capture and storage cannot currently be justified privately and are not going to be supported with public funds, yet that if public funds are going to support an initial fleet of IGCC plants the technology’s primary advantage, the capability to capture CO₂ for storage, must be incorporated to some degree.

3.1. Conceptual Plan

A minimal requirement for a “CCS-ready” IGCC power plant would include a conceptual plan for a future retrofit. This requirement would not require any actual changes to the IGCC plant to be initially built, but it would require early consideration of how a future retrofit would occur. This requirement would require that future CO₂ capture capability has been considered in the design of the current plant, but would not add any significant additional initial costs to the plant.

3.2 Additional Size Requirement – Preinvestment

An additional requirement that would require a larger pre-investment in anticipation of future CCS technology could involve allocating sufficient additional space in the plant to accommodate the additional CO₂ capture equipment. This requirement would also involve preparing for the resizing of some components that would have to occur with a future retrofit to maintain the same level of power output.

A recent study assessing the costs associated with preparing for a future CO₂ capture retrofit by pre-investing in additional space and resizing, estimated an increase in upfront costs of about 5% (EPRI, 2003). This study, which included oversizing the initial fleet of plants and leaving additional physical space for the shift reactor, absorber and compression units as the pre-investment requirements, estimated that a 5% increase in initial costs would increase the cost of electricity by about 3-6%. They also predicted that this level of pre-investment would reduce the costs of a future retrofit; the cost of electricity increased 22-28% when retrofitted compared to anticipated cost of electricity increase of 30-43% when CO₂ capture is added without pre-investment.

3.3 Identification of an Appropriate Storage Location

Another potential requirement could be for a specific appropriate underground storage location be identified and characterized for a repository for the CO₂ to be captured in the future. Such a requirement could limit appropriate locations for IGCC plants, however, economies of scale and geographic variation in pipeline costs are such that there is no definitive distance over which one can claim that transportation costs are too expensive (Bradshaw, 2004, personal communication). The distance between the
storage location and the power plant would vary, therefore, depending on the proximity of the power plant site to appropriate geologic formations, but this requirement would require consideration of the feasibility and costs associated with building a CO$_2$ pipeline to the storage location. This requirement would add several major additional factors into the power plant location process. Traditional factors included in determining power plant location include proximity to load, access to fuel, water availability, environmental and social consideration, as well as site specific factors including space and layout. This requirement would add a requirement for identification and characterization of a specific potential storage location, for consideration of the feasibility of transporting the CO$_2$ to that location, and for considering the potential for shared CO$_2$ pipelines and storage locations.

3.4 Installation of CO$_2$ Capture Equipment Without Full Integration

The size and complexity of power plants means that there are major inefficiencies associated with optimizing an initial design and construction of a power plant to run one way and then at some point later retrofitting that plant to run in a very different way. In addition there is considerable risk associated with investing for preparedness for potential future retrofits when there is large potential for technological changes in both the IGCC technology and the CO$_2$ capture technology (Davison et al., 2004). The options described below avoids these inefficiencies and risks by assuming some way to cover the additional costs associated with installing CO$_2$ capture equipment from the onset. Due to the significant costs of installing CO$_2$ capture equipment, additional government incentive, either financial or regulatory, might be required for these options to be realized.

3.4.1 Require a Slipstream for CO$_2$ Capture Demonstration

One option that would limit the additional upfront capital costs but allow for relatively easy adoption of CO$_2$ capture technology demonstration is to require IGCC power plants to design capabilities to divert a slip stream of the syngas before the gas turbine to be go through the CO$_2$ capture process. This requirement would allow the plant to be built and optimized without CO$_2$ capture technology, but would allow for the possibility of getting some of the needed operational experience with CO$_2$ capture if additional funding to demonstrate CO$_2$ capture were provided. The major advantage of this option is that it sets-up a near term potential opportunity for gaining experience with CO$_2$ capture technology without taking the risk of pre-investing a lot of money to prepare for a technology that may change considerably between the time that the plant is built and the time that it will be advantageous to install CO$_2$ capture technology. The costs associated with installing the CO$_2$ capture equipment to separate the CO$_2$ in the slip stream would still be high, but this plan provides a starting point for requesting additional funds to support the separate CO$_2$ capture component of the project. While the bulk of the capital costs of installing the CO$_2$ technology are likely to be quite comparable to that when the CO$_2$ capture equipment is incorporated into the IGCC plant, the smaller quantities of gas would reduce the scale of the required equipment which would lower the costs. In addition, the lack of integration and comparative simplicity of only capturing CO$_2$ in a separate slip stream would reduce overall costs. While this option attempts to satisfy, to some degree, the needs for demonstration of CO$_2$ capture technology, the
slipstream approach does not provide the valuable and necessary operating experience with CO₂ capture technology integrated into an IGCC power plant.

3.4.2 Require Installation of Equipment Without Full Utilization

Given the inefficiencies associated with building a plant one way but anticipating a retrofit sometime in the future, another option would be to require the installation of CO₂ capture equipment but limit the immediate utilization of the CO₂ capture components. This option allows the initial construction costs to be optimized for capture, but the full energy penalty associated with actually capturing the CO₂ is not realized. Given the high level of cycling and integration in an IGCC power plant with CO₂ capture, reducing the utilization of the CO₂ capture components may be complicated and reduce the viability of this approach. Installing equipment including the shift reactor and the sorption units but then postponing their use may have a similar level of difficulty as does preparing for a future retrofit at some point in the future. There is uncertainty and technical debate about the relative difficulty and cost of adding the shift reactor and the sorption unit during a retrofit versus installing these components initially and not actually capturing the CO₂.

Compressing the CO₂ gas to prepare for transport to a storage location is one of the most expensive parts of CO₂ capture, so to reduce operating costs but still gain operational experience with separating the CO₂ all of the CO₂ separation equipment except the compressor could be installed and operated. Given the extensive application of gas compression, demonstration of CO₂ compression is not critical. If the near-term goal of accumulating operational experience with CO₂ capture technology was the priority, and the initial funding to cover the capital costs were supplied, this option could be viable. This option also provides a set-up for going farther and actually compressing, transporting and storing the CO₂ if and when there is support to do so.

4. Conclusions

In addition to the specific requirements mentioned in each of the sections above, multiple variations within each category are possible. If the U.S. government is going to provide a subsidy to promote the deployment of IGCC power plants that are “sequestration-ready,” policy-makers are going to have to define the specific requirements. A complex array of political, economic and technical uncertainties will be considered in determining the appropriate definition.

One of the biggest uncertainties that will influence opinions on what “sequestration-ready” should mean is the likely timeframe in which a cost of emitting CO₂ to the atmosphere will be imposed. While many are anticipating restrictions on CO₂ emissions that will generate a cost of emitting CO₂ within 5-10 years, some do not anticipate any CO₂ regulations in the U.S. The minimal requirements involving developing a conceptual plan of a future retrofit without actually requiring any actual changes to the initial plant design is likely to be favored by those who view a long time before a real cost will be associated with emitting CO₂, while the more stringent requirements that will involve a significant level of pre-investment will be viewed more favorably by those who anticipate a CO₂ cost in the next few years.

This discussion of the term “sequestration-ready” or “CCS-ready” highlights the need for efforts to couple the deployment of IGCC with actual CCS demonstration. The
size and complexity of power plants means that there are major inefficiencies associated with optimizing an initial design and construction of a power plant to run one way and then at some point later retrofitting that plant to run in a very different way. In addition there is considerable risk associated with investing for preparedness for potential future retrofits when there is large potential for technological changes in both the IGCC technology and the CO₂ capture technology. Due to the significant costs of installing CO₂ capture equipment and transporting and storing the captured CO₂ in the absence of a CO₂ regulating regime, additional government provided incentives, either regulatory or financial, beyond the support for IGCC deployment, would be required for coupled, integrated projects incorporating both IGCC and CCS.
References
2005-09 Stephens, Jennie C., “Coupling CO2 Capture and Storage with Coal Gasification: Defining “Sequestration-Ready” IGCC.”

2004-05 Sagar, Ambuj and Pankaj Chandra. “Technological Change in the Indian Passenger Car Industry.”

The Belfer Center for Science and International Affairs (BCSIA) Discussion Papers, established in 1991, will be issued on an irregular basis with three programmatic subseries: International Security; Science, Technology, and Public Policy; and Environment and Natural Resources. Inquiries and orders may be directed to: Belfer Center for Science and International Affairs, Publications, Harvard University, 79 JFK Street, Cambridge, MA, 02138.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-12</td>
<td>Garcia, Denise. "Analyzing the Issue of Curbing the Unrestricted Availability and Proliferation of Small Arms and Light Weapons."</td>
</tr>
<tr>
<td>2003-11</td>
<td>Allison, Graham. “Implications for Public Policy of the Threat from Bioterrorism.”</td>
</tr>
<tr>
<td>2003-08</td>
<td>Oil and Security Executive Session Rapporteur's Report.</td>
</tr>
<tr>
<td>2003-06</td>
<td>Snyder, Lori, "The Effects of Environmental Regulation on Technology Diffusion in the Chlorine Manufacturing Industry."</td>
</tr>
<tr>
<td>2002-17</td>
<td>Barrett, Scott and Robert Stavins. "Increasing Participation and Compliance in International Climate Change Agreements."</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>2002-10</td>
<td>Lessons of the 'War' on Drugs for the 'War' on Terrorism</td>
</tr>
<tr>
<td>2002-07</td>
<td>The Quest for Interoperability In the United States and Europe.</td>
</tr>
<tr>
<td>2002-01</td>
<td>Brazilian Climate Epistemers' Multiple Epistemes: Shared Meaning, Diverse Identities and Geopolitics in Global Change Science.</td>
</tr>
<tr>
<td>2001-18</td>
<td>Lessons from the American Experiment with Market-Based Environmental</td>
</tr>
</tbody>
</table>

The Belfer Center for Science and International Affairs (BCSIA) Discussion Papers, established in 1991, will be issued on an irregular basis with three programmatic subseries: International Security; Science, Technology, and Public Policy; and Environment and Natural Resources. Inquiries and orders may be directed to: Belfer Center for Science and International Affairs, Publications, Harvard University, 79 JFK Street, Cambridge, MA, 02138.
The Belfer Center for Science and International Affairs (BCSIA) Discussion Papers, established in 1991, will be issued on an irregular basis with three programmatic subseries: International Security; Science, Technology, and Public Policy; and Environment and Natural Resources. Inquiries and orders may be directed to: Belfer Center for Science and International Affairs, Publications, Harvard University, 79 JFK Street, Cambridge, MA, 02138.

Policies.”

2001-09 Pate, Jason and Gavin Cameron. “Covert Biological Weapons Attacks against Agricultural Targets: Assessing the Impact against U.S. Agriculture.”

2001-07 Foster, Charles H.W. Foster and James N. Levitt, “Reawakening the Beginner’s Mind: Innovation in Environmental Practice.”

2001-04 Kayyem, Juliette. “U.S. Preparations for Biological Terrorism: Legal Limitations and the Need for Planning.”

2001-03 Foster, Charles H.W. and James S. Hoyte, “Preserving the Trust: The Founding of the Massachusetts Environmental Trust.”

2001-02 Coglianese, Cary. “Is Consensus an Appropriate Basis for Regulatory Policy?”

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-23</td>
<td>Eckley, Noelle. “From Regional to Global Assessment: Learning from Persistent Organic Pollutants.”</td>
</tr>
</tbody>
</table>
The Belfer Center for Science and International Affairs (BCSIA) Discussion Papers, established in 1991, will be issued on an irregular basis with three programmatic subseries: International Security; Science, Technology, and Public Policy; and Environment and Natural Resources. Inquiries and orders may be directed to: Belfer Center for Science and International Affairs, Publications, Harvard University, 79 JFK Street, Cambridge, MA, 02138.

2000-12 Clark, William et. Al. “Assessing Vulnerability to Global Environmental Risk.”

2000-10 Cash, David. “In Order to Aid inDiffusing Useful and Practical Information’: Cross-scale Boundary Organizations and Agricultural Extension.”

2000-09 Foster, Charles, H.W. et al., “Colloquium on Environmental Regionalism.”

2000-08 Lee, Henry and Shashi Kant Verma, “Coal or Gas: The Cost of Cleaner Power in the Midwest.”

2000-07 Fischer, Markus, ”The Liberal Peace: Ethical, Historical and Philosophical Aspects.”

2000-06 Cash, David, ”Distributed Assessment Systems: An Emerging Paradigm of Research, Assessment and Decision-making for Environmental Change.”

2000-05 Donohue, Laura K., ”Civil Liberties, Terrorism, and Liberal Democracy: Lessons from the United Kingdom.”

2000-04 Golub, Alexander, ”Russian Forests for Climate Change Mitigation: An Economic Analysis.”

R-99-01 Rapporteur's Report. ”Workshop on Research and Policy Directions for Carbon Management.”

99-20 Rufin, Carlos, ”Institutional Change in the Electricity Industry: A Comparison of Four Latin American Cases.”
99-19 Rothenberg, Sandra and David Levy, "Corporate Responses to Climate Change: The Institutional Dynamics of the Automobile Industry and Climate Change."

99-18 Stavins, Robert, "Experience with Market-Based Environmental Policy Instruments."

99-11 Eckley, Noelle, "Drawing Lessons About Science-Policy Instruments: Persistent Organic Pollutants (POPs) under the LRTAP Convention."

99-09 Seng, Jordan. “If Iraq Gets the Bomb: Zealous Rogues, Old-Fashioned Tyrants, and Nuclear Deterrence.”

99-08 Konoplyov, Sergei. “Analytical Centers in Ukraine.”

99-06 Pfaff, Alexander S. and Stavins, Robert N. “Readings in the Field of Natural Resource & Environmental Economics.”

99-05 Johnsen, Tor Arnt, Shashi Kant Verma and Catherine Wolfram. “Zonal Pricing and Demand-Side Bidding in the Norwegian Electricity Market.”

99-03 Grant, Richard. “Power and Prosperity: Challenges and Opportunities for Small States.”

99-01 Hahn, Robert W. “The Impact of Economics on Environmental Policy.”

Responses to Global Climate Change: Recommendations to promote collaborative assessments and information systems.”

98-22 O’Neill, Kate. “(Not) Getting to ‘Go’: Recent Experience in International Cooperation over the Management of Spent Nuclear Reactor Fuel.”

98-20 Patt, Anthony. “Analytic Frameworks and Politics: The Case of Acid Rain in Europe.”

98-15 Miller, Clark. “Extending Assessment Communities to Developing Countries.”

98-12 Farrell, Alex and Terry J. Keating. “Multi-Jurisdictional Air Pollution Assessment: A Comparison of the Eastern United States and Western Europe.”

98-11 Keating, Terry J. and Alex Farrell. “Problem Framing and Model Formulation: The Regionality of Tropospheric Ozone in the U.S. and Europe.”

98-10 Samson, Paul. “Non-State Actors and Environmental Assessment: A Look at Acid Rain and Global Climate Change.”
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-09</td>
<td>European Politics with a Scientific Face: Transition Countries, International Environmental Assessment, and Long Range Transboundary Air Pollution.</td>
<td>VanDeveer, Stacy D.</td>
</tr>
<tr>
<td>98-08</td>
<td>A Suggested Model for Implementing the Clean Development Mechanism.</td>
<td>Chayes, Abram.</td>
</tr>
<tr>
<td>98-07</td>
<td>Why the United States Should Spread Democracy.</td>
<td>Lynn-Jones, Sean M.</td>
</tr>
<tr>
<td>98-04</td>
<td>How do Economists Really Think about the Environment?</td>
<td>Stavins, Robert N.</td>
</tr>
<tr>
<td>98-02</td>
<td>Market-Based Environmental Policies.</td>
<td>Stavins, Robert.</td>
</tr>
<tr>
<td>97-15</td>
<td>Managing Resources as Whole Systems: A Primer for Managers.</td>
<td>Foster, Charles, H.W.</td>
</tr>
<tr>
<td>97-12</td>
<td>Climate Change: Economics, Politics, and Policy.</td>
<td>Hahn, Robert.</td>
</tr>
<tr>
<td>97-09</td>
<td>Assessing Climate Change Impacts: Co-Evolution of Knowledge, Communities and Methodologies.</td>
<td>Long, Marybeth and Alastair Iles.</td>
</tr>
<tr>
<td>97-10</td>
<td>Climate Science and Policy in India: Learning Some Lessons.</td>
<td>Kandlikar, Milind and Ambuj Sagar.</td>
</tr>
<tr>
<td>97-08</td>
<td>The Development of an International Agenda for Climate Change.</td>
<td>Franz, Wendy E.</td>
</tr>
</tbody>
</table>
97-04 Wright, Jan C. “‘Bright Lines’ and the Value of Life: Resolving the Dispute over the Regulation of Carcinogens.”

97-02 Stavins, Robert N. “Economic Incentives for Environmental Regulation.”

97-01 Arbatov, Alexei G. “Military Reform in Russia: Dilemmas, Obstacles, and Prospects.”

96-03 de Nevers, Renee. “Sustaining the Transition? Western Efforts to Support Democracy and Prevent Conflict in Russia.”

96-02 Rogers, Elizabeth S. “Using Economic Sanctions to Prevent Deadly Conflict.”

95-11 Zaborsky, Victor. “Crimea and the Black Sea Fleet in Russian-Ukrainian Relations.”

95-08 Allison, Graham T., Owen R. Coté, Jr., Richard A. Falkenrath and Steven E. Miller. “Avoiding Nuclear Anarchy: Containing the Threat of Loose Russian Nuclear Weapons and Fissile Material.”

95-03 Stavins, Robert N. and Tomasz Zylicz. “Environmental Policy in a Transition Economy: Designing Tradable Permits for Poland.”
The Belfer Center for Science and International Affairs (BCSIA) Discussion Papers, established in 1991, will be issued on an irregular basis with three programmatic subseries: International Security; Science, Technology, and Public Policy; and Environment and Natural Resources. Inquiries and orders may be directed to: Belfer Center for Science and International Affairs, Publications, Harvard University, 79 JFK Street, Cambridge, MA, 02138.
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-09</td>
<td>Falkenrath, Richard A.</td>
<td>“The United States and Ballistic Missile Defense after the Cold War.”</td>
</tr>
<tr>
<td>94-06</td>
<td>Not Available.</td>
<td></td>
</tr>
<tr>
<td>94-05</td>
<td>Zaborsky, Victor.</td>
<td>“Nuclear Disarmament and Nonproliferation: The Evolution of the Ukrainian Case.”</td>
</tr>
<tr>
<td>94-01</td>
<td>Bender, Rodd, Wyman Briggs, and Diane DeWitt</td>
<td>“Toward Statewide Unit Pricing in Massachusetts: Influencing the Policy Cycle.”</td>
</tr>
<tr>
<td>93-06</td>
<td>Hahn, Robert W.</td>
<td>“An Economic Analysis of Scrappage.”</td>
</tr>
<tr>
<td>93-05</td>
<td>Hancke, Bob.</td>
<td>“Technological Change and Its Institutional Constraints.”</td>
</tr>
<tr>
<td>93-02</td>
<td>Stavins, Robert N.</td>
<td>“Transaction Costs and the Performance of Markets for Pollution Control.”</td>
</tr>
<tr>
<td>92-12</td>
<td>Hane, Gerald Jiro.</td>
<td>“Research and Development Consortia in Innovation in Japan: Case Studies in Superconductivity and Engineering Ceramics.”</td>
</tr>
</tbody>
</table>

92-05 Eaton, Susan C. “Union Leadership Development in the 1990s and Beyond: A Report with Recommendations.”

92-03 Stavins, Robert N. and Bradley W. Whitehead. “The Greening of America’s Taxes: Pollution Charges and Environmental Protection.”

92-02 Parson, Edward A. “Protecting the Ozone Layer: The Evolution and Impact of International Institutions.”

92-01 Branscomb, Lewis M. “S & T Information Policy in the Context of a Diffusion Oriented National Technology Policy.”

91-14 Hahn, Robert W. “Government Markets and the Theory of the Nth Best.”

91-12 Branscomb, Lewis M. “America’s Emerging Technology Policy.”

91-02 Merchant, Gery E. “Freezing CO₂ Emissions: An Offset Policy for Slowing Global Warming.”

91-01 Jaffee, Adam and Robert N. Stavins. “Evaluating the Relative Effectiveness of Economic Incentives and Direct Regulation for Environmental Protection: Impacts on the Diffusion of Technology.”