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FINANCIAL TRANSMISSION RIGHT FORMULATIONS

William W. Hogan1

March 31, 2002

Physical transmission rights present so many complications for a restructured
electricity market that some other approach is required.  With a standard market
design centered on a bid-based, security-constrained, economic dispatch with
locational prices, the natural approach is to define financial transmission rights
that offer payments based on prices in the actual dispatch.  Different models have
been proposed for point-to-point and flowgate rights, obligations and options.  A
consistent framework provides a comparison of alternative rights.  The
comparison addresses issues of modeling approximations, revenue adequacy,
auction formulation and computational requirements.  In the case of point-to-point
obligations, the practical feasibility of the approach has been demonstrated using
adaptations of dispatch software.  In the case of point-to-point options, the
computational strategies could be extended and might also work but have not
been demonstrated.  In the case of flowgate rights in the full definition, the
computational approach available from dispatch software no longer applies and
something new would be required.  Or the flowgate implementation might include
restrictions that would compromise the value of flowgates as hedges.

INTRODUCTION

Transmission rights stand at the center of market design in a restructured electricity
industry.  Beginning with the intuition that electricity markets require some rights to use the
transmission system, simple models of transmission rights soon founder after confronting the
limited capacity and complex interactions of a transmission grid.  The industry searched for many
years without success looking for a workable system of physical rights that would support
decentralized decisions controlling use of the grid.

                                               
1 William W. Hogan is the Lucius N. Littauer Professor of Public Policy and Administration, John F.
Kennedy School of Government, Harvard University and a Director of LECG, LLC. This paper draws on work for
the Harvard Electricity Policy Group and the Harvard-Japan Project on Energy and the Environment. Ongun Alsaç,
Art Desell, Fadil Dobraca, Scott Harvey, Guillermo Irisarri, Xingwang Ma, Jose Medina, Sasan Mokhtari, Richard
O'Neill, Andy Ott, Roberto Paliza, Susan Pope, Brian Stott, David Sun, and Greg Williams provided helpful
discussion and comments.  The author is or has been a consultant on electric market reform and transmission issues
for American National Power, Brazil Power Exchange Administrator (ASMAE), British National Grid Company,
Calpine Corporation, Comision Reguladora De Energia (CRE, Mexico), Commonwealth Edison Company,
Conectiv, Detroit Edison Company, Duquesne Light Company, Dynegy, Edison Electric Institute, Electricity
Corporation of New Zealand, Electric Power Supply Association, GPU Inc. (and the Supporting Companies of
PJM), GPU PowerNet Pty Ltd., Mirant Corporation, National Independent Energy Producers, New England
Independent System Operator, New England Power Company, New York Independent System Operator, New York
Power Pool, New York Utilities Collaborative, Niagara Mohawk Corporation, Pepco, Public Service Electric & Gas
Company, PJM Office of Interconnection, San Diego Gas & Electric Corporation, Sempra Energy, TransÉnergie,
Transpower of New Zealand, Westbrook Power, Williams Energy Group, and Wisconsin Electric Power Company.
The views presented here are not necessarily attributable to any of those mentioned, and any remaining errors are
solely the responsibility of the author. (Related papers can be found on the web at
http://www.ksg.harvard.edu/whogan).
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The physical interpretation of transmission rights was the principal complaint that buried
the Federal Energy Regulatory Commission’s (FERC) original Capacity Reservation Tariff.2  Any
attempt to match a large number of scheduled transactions to a set of transmission rights creates a
burden that threatens the flexibility of trade needed to support a market or the flexibility of
operations needed to maintain reliability.  And in a design built on the centerpiece of a coordinated
spot market,3 physical transmission rights or any associated scheduling priority would create
perverse incentives and conflicts with priorities defined by the bids used in a security-constrained
economic dispatch.  The idea that a simple physical right can be made to work soon mutates into a
complex system of rules intended to force market participants to act against market incentives.  In
the end, the right becomes not so physical and not much of a right.  The idea dies hard, but the
physical rights model deserves a decent burial.

If physical rights won’t work, then something different is needed to achieve the same
objective in providing a compatible definition of transmission rights for a competitive electricity
market.  As electricity market design developed, the focus turned from so-called physical
transmission rights to a redefinition of transmission rights as financial instruments defined with a
close connection to both the transmission grid and a spot market organized through a bid-based,
security-constrained, economic dispatch. 4  The financial approach separates actual use of the grid
from ownership of the transmission rights and provides many simplifications that avoid the
principal obstacles encountered in the search for physical rights.  A coordinated spot market with
locational prices complemented by financial transmission rights is a hallmark of market design that
works.

There are many possible definitions of financial transmission rights, each with its
advantages and disadvantages.  Further, the basic building blocks of financial transmission rights
could support a secondary market with a wide variety of other trading instruments, just as a forward
contract can be decomposed into a variety of elements with different risk properties.

The basic building blocks under different definitions have different properties.  The
purpose here is to organize a common analysis covering four different types of financial
transmission rights and compare them in regards to four critical aspects of the transmission rights
model.  The common notation is a hodgepodge designed to bridge the electrical engineering and
economic market formulations.  The four types of financial transmission rights appear as
combinations of two configurations of rights, point-to-point and flowgate, and two financial
treatments, obligations and options.

The four aspects of the design cover modeling approximations, revenue adequacy,
auction formulation, and computational requirements.  These do not include important related
subjects such as investment incentives.  However, an understanding of at least these four aspects of
the formulations would be important in choosing among the types of rights to include in a market
                                               
2 Federal Energy Regulatory Commission, "Capacity Reservation Open Access Transmission Tariffs,"
Notice of Proposed Rulemaking, RM96-11-000, Washington DC, April 24, 1996
3 Federal Energy Regulatory Commission, “Working Paper on Standardized Transmission Service and
Wholesale Electricity Market Design,” Washington, DC, March 15, 2002.
4 W. Hogan, "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Vol.
4, 1992, pp. 211-242.
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design.  The same would be true of a decision to include all types of rights, where the market
participants could ask for any combination. 5

Approximation refers to the simplifications inherent in the transmission rights model in
comparison to the complexity of the real transmission system.  To illustrate the point, the
simplification that there are no loop flows makes the contract-path transmission model workable in
theory.  But the simplification deviates from the reality and the contract-path model became
recognized as inefficient and unworkable in practice.  The different transmission right definitions
depend to different degrees on approximations of the reality of the network.  The discussion here
begins with a simplified but explicit characterization of an alternating current load flow to then
specialize it in the market context for an examination of different transmission rights.

Revenue adequacy refers to a financial counterpart of physical "available transmission
capacity."  A financial transmission right as defined here is a contract for a financial payment that
depends on the outcome of the spot market.  By definition, the system is revenue adequate
whenever the net revenue collected by the system operator for any period of the spot market is at
least equal to the payment obligations under the transmission rights.  The analogous physical
problem would be to define the available capacity for transmission usage rights such that the
transmission schedules could be guaranteed to flow in any given period.  A common requirement of
both is to maintain the capability of the grid, but the complex interactions make it impossible to
guarantee that physical rights could flow no matter what the dispatch conditions.  By contrast, we
examine here conditions that do ensure revenue adequacy for the financial transmission rights.

A natural approach to allocating some or all transmission rights is through an auction.
The auction design also extends to regular and continuing coordinated auctions that could be
employed to reconfigure the pattern of transmission rights, supplemented by secondary market
trading.  The auction formulation interacts with the conditions for revenue adequacy, with different
implications for different definitions of financial transmission rights.

The computational requirements for execution of a transmission rights auction differ for
the different models.  The inherent scale of the security-constrained economic dispatch model takes
the discussion into a realm where the ability to solve the problem cannot be taken for granted.  In
some cases, the auction model is no more complicated than a conventional security-constrained
economic dispatch, and commercial software could be and has been adapted successfully for this
purpose.  In other cases, the ability to solve the formal model is not assured, and new approaches or
various restrictions might be required.  Hence, proposals for more ambitious financial transmission
right formulations have been offered with the caveat that the expanded service beyond point-to-
point rights should be offered "as soon as it is technically feasible." 6

                                               
5 Richard P. O'Neill, Udi Helman, Benjamin F. Hobbs, William R. Stewart, and Michael H. Rothkopf,  "A
Joint Energy and Transmission Rights Auction: Proposal and Properties," Federal Energy Regulatory Commission,
Working Paper, February 2002.
6 Federal Energy Regulatory Commission, “Working Paper on Standardized Transmission Service and
Wholesale Electricity Market Design,” Washington, DC, March 15, 2002, p. 11.  Similar qualifications appear in
discussions of an introduction of options or flowgate rights in PJM, New York, New England, the Midwest, and so
on.



4

The purpose here is to identify some of the issues raised in the evaluation of technical
feasibility.  The comparison of transmission rights models involves tradeoffs.  Some versions may
be impossible to implement.  At a minimum, ease of both implementation and use for alternative
transmission rights models should not be taken for granted.

TRANSMISSION LINE LOAD FLOW MODEL

Every alternating current (AC) electrical network has both real and reactive power
flows.  The sinusoidal pattern of instantaneous power flow produces a complex power
representation with real and imaginary parts that correspond to real and reactive power.  The real
power flows are measured in Mega-Watts (MWs), and the reactive power flows are measured in
Mega-Volt-Amperes-Reactive (MVARs).  The VAR is the product of voltage and current, which
is the same unit as the watt; the notational difference is maintained to distinguish between real
and reactive power.  Real power is defined as the average value of the instantaneous power and
is the "active" or "useful" power.  Reactive power is the peak value of the power that "travels
back and forth" over the line and has average value of zero and is "capable of no useful work …
[and] represents a 'nonactive,' or 'reactive,' power."7   The combination of real and reactive power
flow is the apparent power in Mega-Volt-Amperes (MVA), which is a measure of the magnitude
of the total power flow.

The basic model characterizing electricity markets and financial transmission rights
(FTR) centers on the description of a network of lines and buses operating in an electrical steady-
state.  A critical element is the representation of a transmission line.  There is a developed
literature on this subject.  The choices here do not exhaust all that is relevant, but illustrate the
basic issues in the treatment of AC networks for purposes of modeling economic dispatch,
locational pricing and the related definition of financial transmission rights.  In particular,
although the focus is on real power flow, the model includes non-linear features of real and
reactive power and control devices to illustrate the implications of various simplifications and
approximations often suggested for economic dispatch, pricing and definition of financial
transmission rights.  Further extensions to include other elements of flexible AC transmission
systems (FACTS) could be added, with the associated non-linear characterizations of even the
effects on real power flows.8

A generic transmission line as represented here is illustrated in the accompanying
figure. The data include the resistance (r), reactance (x), and line charging capacitance (2Bcap).
Variable controls include a transformer with winding tap ratio (t) and a phase shift angle (α ).
The voltage magnitude at bus i is Vi and the voltage angle is iδ .  The flow of real and reactive

power bus from i towards j is the complex variable Zij.   Assuming a steady-state flow can be
achieved, the conditions relate the flow of complex power on a line to the control parameters
including the voltage magnitudes and angles.  Due to losses, the flow out of one bus is not the

                                               
7 O.I. Elgerd, Electric Energy Systems and Theory, McGraw-Hill Book Company, 2nd. ed., New York,
1982, p. 23.  For an excellent summary of the basics for those other than electrical engineers, see pp.  19-32.
8 S.Y. Ge, T. S. Chung, "Optimal Active Power Flow Incorporating Power Flow Control Needs in Flexible
AC Transmission Systems," IEEE Transactions on Power Systems, Vol. 14, No. 2, May 1999, pp. 738-744.
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same as the flow into the other.  With these sign conventions, positive flow away from a bus
adds to net load at the bus.

BcapkBcapk

Generic  Transmission  Line

iδ
iV

jδ
jV

ijZ jiZ

1: kj
kt e α

kr kx

The sign conventions support an interpretation of an increase in net load as typically
adding to economic benefit and associated with a positive price.  Correspondingly, an increase in
generation reduces net load and typically adds to cost.9

The flow of power in an AC electric network can be described by a system of equations
known as the AC load flow model.10

                                               
9 Atypical negative prices are allowed, and in the presence of system congestion may not be so atypical.
10 In anticipation of later simplifications, the notation here follows the development of the "DC" Load Flow
model in F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R.E. Bohn, Spot Pricing of Electricity, Kluwer
Academic Publishers, Norwell, MA, 1988, Appendices A and D.  The DC Load flow refers to the real power half of the
nonlinear AC load flow model.  Under the maintained assumptions, there is a weak link between the reactive power
and real power halves of the full problem.  And the real power flow equations have the same general form as the direct
current flow equations in a purely resistive network; hence the name "DC Load Flow."  Similar linear approximations
are available for reactive power flow, but the approximation is poor in a heavily loaded system.  Hence, if in addition to
real power flow, voltage constraints and the associated reactive power are important, then we require the full AC model
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Let:

nB = Number of buses,

nL = Number of transmission lines, with each line having per unit resistance rk,
reactance xk, and shunt capacitance Bcapij for the Π -equivalent
representation of line k,11

Py�  = dP - gP = nB-1 vector of net real power bus loads, i.e. demand minus

generation, ( ),t t
P Ps Py y y= � where Psy is at the swing bus,

Qy� = dQ - gQ - = nB-1 vector of reactive power bus loads, i.e. demand minus

generation, ( ),t t
Q Qs Qy y y= � where Qsy is at the swing bus,

/  = nB Vector of voltage angles relative to the swing bus, where by definition
/s=0,

V  = nB Vector of voltage magnitudes, where by assumption the voltage at the
swing bus, Vs, is exogenous,

tk  = ideal transformer tap ratio on line k,

kα = ideal transformer phase angle shift on line k,

A = the oriented line-node incidence matrix, the network incidence matrix with
elements of 0, 1, -1 corresponding to the network interconnections.  If link
k originates at bus i and terminates at bus j, then aki = 1 = -akj .

Define12

Gk = rk/(rk
2 + xk

2),


k = xk/(rk
2 + xk

2),

zP ijk = real power (MWs) flowing out of bus i towards bus j along line k, and

                                                                                                                                                      

and spot pricing theory as in M. C. Caramanis, R. E. Bohn and F.C. Schweppe, "Optimal Spot Pricing: Practice and
Theory," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 9, September 1982.

 11 For a development of the Π -equivalent representation of a transmission line, see A. R. Bergen, Power
Systems Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1986, chapter 4. Here we follow Wood and
Wollenberg in representing Bcap as one-half the total line capacitance in the Π -equivalent representation; A. J. Wood
and B. F. Wollenberg, Power Generation, Control, and Operation, John Wiley and Sons, New York, 1984, p. 75.
See also H. H. Skilling, Electric Transmission Lines, McGraw Hill, New York, 1951, pp. 126-133.

12 Here the notation follows Schweppe et al.. The purpose is to connect to the discussion of the economics of
spot markets and the definition of FTRs.  However, the electrical engineering literature follows different notational
conventions.  For example, Wood and Wollenberg and others use a different sign convention for Ω .  Also note that
here Vi is the magnitude of the complex voltage at bus i, not the complex voltage itself as in the appendix.  Finally, we
use y to denote the net loads at the buses.  This should not be confused with the complex admittance matrix, often
denoted as Y, which is composed of the elements of G and Ω .  See the appendix for further discussion.
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zQ ijk = reactive power (MVARs) flowing out of bus i towards bus j along line k.

Then the complex power flow Zij includes the real and reactive components:13

2

2

  [  - (  / )cos(  -  ) ]  (  / ) sin(  -   ),

  [ (  / )  - ( / ) cos(  -  - ) ]  (  / ) sin(  -  - )  .

Pijk k i i j k i j k k i j k i j k

Pjik k j k j i k j i k k j i k j i k

z G V VV t VV t

z G V t V V t V V t

δ δ α δ δ α

δ δ α δ δ α

= + +Ω +

= +Ω
(1)

and

( )

2 2

2 2

  [   (  / ) cos(    ) ]  (  / )sin(    )   ,

  [ /   (  / ) cos(    ) ]  (  / )sin(    )  .

k

k

Qijk k i i j k i j k k i j k i j k i cap

Qjik k j k j i k j i k k j i k j i k j cap

z V VV t G VV t V B

z V t V V t G V V a V B

δ δ α δ δ α

δ δ α δ δ α

=Ω − − + − − + −

=Ω − − − − − − −

Real losses on line k are given by

lPk = zPijk + zPjik    .

Hence, in terms of the angles and voltages we have

( ) ( ) ( ) ( )22, , , 2 cos .Pk k i j k i j k i j kl V t =G V V t V V tδ α δ δ α + − − +  

Similarly, reactive power losses are

lQk = zQijk + zQjik  ,

or

( ) ( ) ( ) ( ) ( )22 2 2, , , 2 cos .Qk k i j k i j k i j k i j kl V t = V V t VV t V V Bcapδ α δ δ α Ω + − − + − +  

Given these flows on the lines, conservation of power at each bus requires that the net power
loads balance the summation of the flows in and out of each bus.  Under our sign conventions and
summing over every link connected to bus i, we have

( ) ( )

( ) ( )

, ,

, ,

  ,  

 .   

Pi Pijk Pi Pjik
k i j k j i

Qijk QjikQi Qi
k i j k j i

d z g z and

d z g z

+ = −

+ = −

∑ ∑

∑ ∑

Here the summation includes each directed line that terminates at i (k(j,i)) or originates at i (k(i,j))
Hence, the net loads satisfy

                                               
13 For details, see the appendix.
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( ) ( )

( ) ( )

, ,

, ,

   ,  

 .   

Pi Pi Pi Pjik Pijk
k j i k i j

Qi Qi Qi Qjik Qijk
k j i k i j

y d g z z and

y d g z z

≡ − = − −

≡ − = − −

∑ ∑

∑ ∑

Recognizing that the individual flows can be expressed in terms of the several variables, we
obtain the relation between net loads, bus angles, voltage magnitudes, transformer ratios, and phase
angle changes:

(  , , ,  )
        ( , , ,  )  .

(  , , ,  )
P P

Q Q

y y V t
Y V t

y y V t

δ α
δ α

δ α
   

= =   
   

� �
�

� �

Assuming that there is convergence to a non-singular solution for the steady-state load flow,
this system can be inverted to obtain the relation between the bus angles, voltage magnitudes and
the net power loads given the transformer ratios and phase angle changes.14

1

(  , , ,  )
        (  , , ,  )  ,  

(  , , ,  )

 

-1

            .

P Q

P Q
P Q

y y tJ
J y y t and

y y tV JV

y yJ JP Q P PV
J Y

y yJ JVP VQ Q QV

αδ δ α
α

δ δ δ

δ
−

  
= =  

   

∇ ∇ ∇   ∇
∇ = = = ∇   ∇ ∇∇ ∇      

� �
� �

� �

�

This formulation treats all buses, other than the swing bus, as load buses, with given real and
reactive power loads.  These are sometimes referred to as PQ buses.15  In practice, many generator
buses are operated as PV buses, where Py�  and V are given and the required reactive power is

determined in order to maintain the voltage.16  There are 4(nB - 1) variables (i.e., Py� , Qy� , /� 9) and

2(nB - 1) independent node balance equations.  Hence, half of the variables must be specified and
then the solution obtained for the remainder.  The corresponding change on the representation of the
equations for different treatment of the buses is straightforward.  For example, in the DC-Load
model discussed below, all buses are treated as PV where the first step is to fix Py�  and V to solve

for / and implicitly Qy� .

                                               
14 The convention here is that gradients are row vectors.  Hence, with

( ) ( )
( )

( ) ( )
( ) ( )

1 1 1

2 2 2

, , ,
, ,

, , ,

f u v f u v u f u v v
f u v f

f u v f u v u f u v v

   ∂ ∂ ∂ ∂
= ∇ =   ∂ ∂ ∂ ∂   

.

15 The swing bus is a /9 bus for which the angle and the voltage are exogenous.
16 A. R. Bergen, Power Systems Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1986, pp. 158-160.
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The power flow entering a line differs from the power leaving the line by the amount of the
losses on the line.  Typically, but not always, real power losses will be a small fraction of the total
flow and it is common to speak of the power flow on the line.  In the DC-Load case discussed
below, losses are ignored and the real power flow is defined as the same at the source and
destination.  In the case of an AC line, we could select either or both ends of the line as metered and
focus on the flow at that location for purposes of defining transmission constraints.

We can use these relations to define the link between the power flows on the lines and the
net loads at the buses:

(  , , ,  )(  , , ,  ) ( (  , , ,  ), ,  )
              (  , , ,  )  ,

(  , , ,  ) ( (  , , ,  ), ,  ) (  , , ,  )

 

 , 

P P QP P P Q

P Q
Q Q P Q Q P Q

y P Q

K y y tz V t z J y y t t
z K y y t

z V t z J y y t t K y y t

and

K y y

αδ α α α
α

δ α α α α

    
= = = =    

      

∇

� � �� �
� � �

�� � � �

� � �( )
1

1, ,                .PP P

QQ Q

z JK z Y
t

z JK z Y
α

−

−

∇ ∇   ∇ ∇ ∇ 
= = =    ∇ ∇∇ ∇ ∇       

� �

� �

  (2)

Summing over all lines gives total losses as

(  , , ,  )
( (  , , ,  ), ,  ) (  , , ,  )

                ,
( (  , , ,  ), ,  ) (  , , ,  )(  , , ,  )

 

    

Pk
P P P Q P P Qk

Q Q P Q Q P QQk
k

l V t
L l J y y t t L y y t

L l J y y t t L y y tl V t

and

L l J l Y

δ α α α α
α α αδ α

−

 
      = = =      
       

∇ = ∇ ∇ = ∇ ∇

∑
∑

� � � �

� � � �

� 1.

Finally, conservation of power determines the required generation at the swing bus, gPs and gQs, as

  ( , , ,  )    , 

  ( , , ,  )   .

t
Ps Ps P P Q P

t
Qs Qs Q P Q Q

g y L y y t y and

g y L y y t y

α ι

α ι

= − = +

= − = +

� � �

� � �

where ι  is a unity column vector, ( )1 1 1tι = " .  Equivalently,

( , , ,  )  0  , 

( , , ,  ) 0 .

t
P P Q P

t
Q P Q Q

L y y t y and

L y y t y

α ι

α ι

+ =

+ =

� �

� �

These relationships summarize Kirchoff's Laws that define the AC load flow model in terms
convenient for our subsequent characterization of the optimal dispatch problem.  Given the
configuration of the network consisting of the buses, lines, transformer settings, resistances and
reactances, the load flow equations define the relationships among (i) the net inputs at each bus, (ii)
the voltage magnitudes and angles, and (iii) the flows on the individual lines.
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OPTIMAL POWER FLOW

The optimal power flow or economic dispatch problem is to choose the net loads, typically
by controlling the dispatch of power plants, in order to achieve maximum net benefits within the
limits of the transmission grid.  Under its economic interpretation, the solution of the power flow
problem produces locational prices in the usual way.  For our present purposes we define abstract
benefit and cost functions.  The model developed here includes three simplifications.  First, strictly
for notational convenience, we assume that all transmission constraints are defined in terms of the
effects of net loads at buses.  In reality, transmission constraints may treat loads and generation
differently.  Incorporating different buses for generation and load connected by a zero impedance
line would accommodate different effects of load and generation.  This would allow for different
prices for load and generation by treating them as at different locations.

The second simplification is to focus on the real power part of the problem, even in the AC
case.  Here we anticipate a market in which we have FTRs for real power but none are required or
available for reactive power and there is no reactive power market.  This is not a trivial
simplification.  It would be appropriate as a model under the assumption that there are no direct
costs of producing reactive power and the dispatch of reactive power sources is fully under the
control of the system operator.  Finally, we abstract from explicit consideration of generation
operating reserves.17

With these assumptions, we formulate the economic dispatch problem and then extend it to
the case of security-constrained economic dispatch.

Economic Dispatch

We first specialize the notation to represent the transmission constraints, and then the
simplified aggregate benefit function.

The constraints for the economic dispatch problem derive from the characterization of the
power flow in transmission lines.  Under the simplifying assumptions, we treat the real and reactive
power elements differently.  Henceforth, we drop the subscript and treat the variable

P P Py y d g= = −  as the real power bus loads, including for the swing bus ( ( ),t t
sy y y= � ).   We

further subsume all other parameters above in the generic control vector u, with its own constraints
as in

                                               
17 Michael D. Cadwalader, Scott M. Harvey, William W. Hogan, and Susan L. Pope, "Reliability, Scheduling
Markets, and Electricity Pricing," Center for Business and Government, Harvard University, May 1998; provides an
outline of transmission rights and revenue adequacy in the context of explicit reserve markets.  The analysis is
limited to point-to-point obligations, as discussed below, but could be extended to include other types of financial
transmission rights.
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,

.

Qy

u t

u U

α

 
 =  
  

∈
In addition to these control variables, we recognize that system operators may change to

topology of the network as summarized in A.  For simplicity, we limit attention to differentiable
elements of u.  However, in the applications discussed below, the incidence matrix could change.
The principal impact of changes in A is to introduce discrete choices with complications for the
optimization problem but not for the main results for FTRs.

With this notational adjustment, we restate the transmission flows as the function ( ),K y u�

and the losses as ( ),L y u .  We assume that the flows are constrained.  In addition, we incorporate

the constraint limits as part of the function and append any other constraints on the real power
flows.  For example, a constraint on MVA of apparent power flow at a metered end of the line
would be:

2 2
_ 0.Pijk Qijk MVA MAXkz z b+ − ≤ (3)

We treat this as simply another element of ( ),K y u� .  All joint constraints on real power flows and

the various control parameters, including interface and other operating limits, appear under

( ),K y u� . The separate limits on the control variables appear in the set U.  Hence, the summary of

the constraints is:

( )
( )

, 0,

, 0,

.

tL y u y

K y u

u U

ι+ =

≤
∈

�

The objective function for the net loads derives from the benefits of load less the costs of
generation.  Anticipating a bid-based economic dispatch from a coordinated spot market, we
formulate the benefit function for net loads as:

( ) ( ) ( )
,

. .

.

d D g G
B y Max Benefits d Costs g

s t

d g y

∈ ∈
= −

− =

Under the usual convexity assumptions, the constraint multipliers for this optimization
problem define a sub-gradient for this optimal value problem.  For simplicity in the discussion here,
we treat the sub-gradient as unique so that B is differentiable with gradient B∇ .  This gives the right
intuition for the resulting prices, with the locational prices of net loads at tp B= ∇ .  The more
general case would require little more than recognizing that market-clearing prices might not be
unique, as for example at a step in a supply function.
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Then the economic dispatch problem is: 18

( )

( )
( )

,

. .

, 0,

, 0.

y u U

t

Max B y

s t

L y u y

K y u

ι

∈

+ =

≤�

(4)

In general, this can be a complicated non-linear and typically non-convex problem.  In most
cases, but not all, the economic dispatch problem is well-behaved in the sense that there is a solution
with a corresponding set of Lagrange multipliers and no duality gap.  The problem may still be hard
to solve, but that is the challenge for software implementation.

Cases where there may be no solution present a real challenge to electrical systems, as when
there is no convergence to a stable load flow, or for markets, when there may be no price incentives
that can support a feasible equilibrium solution.  Both pathological circumstances would present
difficulties for electricity markets that go beyond the discussion of FTR formulations.  Hence, while
not claiming that all such economic dispatch problems are well-behaved, we will restrict attention to
the case when (4) is well-behaved.

There are many conditions that could be imposed to guarantee that the economic dispatch
problem in (4) meets this condition.  For our purposes, it is simple to restrict attention to problems
that satisfy the:19

Optimality Conditions

( )
( )
( ) ( )

( ) ( ) ( )( ) ( )

* *

* * *

* * * *

*

* *

,

, , , ,

, 0,

, 0, , 0,

0, ,

, arg max , , .

t

t

t t

y u U

There exists y u such that

L y u y

K y u K y u

u U

y u B y L y u y K y u

λ η

ι

η

η

λ ι η
∈

+ =

≤ =

≥ ∈

 ∈ − + − 

� �

�

                                               
18 This is similar to the formulation in M. C. Caramanis, R. E. Bohn and F.C. Schweppe, "Optimal Spot Pricing:
Practice and Theory," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 9, September 1982; the
principal difference is in imposing the thermal limit not just on the real power flow, but on the total MVA flow to
account for the total thermal impact.  The constraints could also include generator capability tradeoffs.  See J. Feinstein,
J. Tscherne, and M. Koenig, "Reactive Load and Reserve Calculation in Real-Time Computer Control System," IEEE
Computer Applications in Power, Vol. 1, No. 3, July 1988, pp. 22-26, for a discussion of the generator capability curve
tradeoffs between real and reactive power.

19 As an historical note, apparently the early work on optimality conditions by Kuhn and Tucker was
motivated by an inquiry into the theory of electrical networks.  Harold W. Kuhn, “Being in the Right Place at the
Right Time,” Operations Research, Vol. 50, No. 1, January-February 2002, p. 132.
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Hence, there is no duality gap.20  The Lagrange multipliers provide the "shadow prices" for
the constraints.  The solution for the economic dispatch problem is also a solution for the
corresponding dual function for this economic dispatch problem:

( ) ( )( ) ( )
,

, , .t t

y u U
Max B y L y u y K y uλ ι η
∈
 − + − 

�

Assuming differentiability, the first order conditions for an optimum ( )* *,y u  include:

( ) ( )( ) ( )* * * * *, , 0.t t
y yB y L y u K y uλ ι η∇ − ∇ + − ∇ =�

Hence, we have the locational prices as

( ) ( ) ( )* * * * *, , .t t t
y yp B y L y u K y uλι λ η= ∇ = + ∇ + ∇ �

The locational prices have the usual interpretation as the price of power at the swing bus

( Gp λ= ), the marginal cost of losses ( )( )* *,L yp L y uλ= ∇  and the marginal cost of congestion

( )( )* *,t
C yp K y uη= ∇ � .21  These locational prices play an important role in a coordinated spot

market and in the definition of FTRs.

Security-Constrained Economic Dispatch

The optimal power flow formulation in (4) ignores the standard procedure of imposing
security constraints to protect against contingent events.  Although the formulation could be
interpreted as including security constraints, it is helpful here to be explicit about the separate
security constraints in anticipation of the later discussion of FTR formulations and auctions that
include the many contingency limits.

The basic idea of security-constrained dispatch is to identify a set of possible contingencies,
such as loss of a line or major facility, and to limit the normal dispatch so that the system would still
remain within security limits if the contingency occurs.  The modeled loss of the facility leaves the
remaining elements in place, suggesting the name of n-1 contingency analysis.22

Hence, a single line may have a normal limit of 100 MW and an emergency limit of 115
MW. 23  The actual flow on the line at a particular moment might be only 90 MW, and the
corresponding dispatch might appear to be unconstrained.  However, this dispatch may actually be

                                               
20 Dimitri P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995, p. 427.
21 The dispatch and prices are not changed by the arbitrary designation of the swing bus.  However, the choice
of the reference bus for pricing, which need not be the same as the swing bus, does affect the decomposition of the
prices.
22 A simultaneous loss of multiple facilities would be defined as a single contingency.
23 Expressing the limits in terms of MW and real power is shorthand for ease of explanation.  Line limits in
AC models appear in terms of MVA for real and reactive power.
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constrained because of the need to protect against a contingency.  For example, the binding
contingency might be the loss of some other line.  In the event of the contingency, the flows for the
current pattern of generation and load would redistribute instantly to cause 115 MW to flow on the
line in question, hitting the emergency limit.  No more power could be dispatched than for the 90
MW flow without potentially violating this emergency limit.  The net loads that produced the 90
MW flow, therefore, would be constrained by the dispatch rules in anticipation of the contingency.
It would be the contingency constraint and not the 90 MW flow that would set the limit.  The
corresponding prices would reflect these contingency constraints. 24

Depending on conditions, any one of many possible contingencies could determine the
current limits on the transmission system.  During any given hour, therefore, the actual flow may be,
and often is, limited by the impacts that would occur in the event that the contingency came to pass.
Hence, the contingencies don't just limit the system when they occur; they are anticipated and can
limit the system all the time.  In other words, analysis of the power flows during contingencies is not
just an exception to the rule; it is the rule.  The binding constraints on transmission generally are on
the level of flows or voltage in post-contingency conditions, and flows in the actual dispatch are
limited to ensure that the system could sustain a contingency.

For instance, suppose that the contingency ω  is the loss of a line.  For sake of simplicity in
the illustration, assume that the only adjustment in the case of the contingency is to change the net
load at the swing bus to rebalance the system.  Then there would be a different network, different
flows, and different losses, leading to a new set of power flow constraints described as:

( )
( )

, , 0,

, , 0,

.

t
s s

s

L y y u y y

K y y u

u U

ω ω ω

ω ω

ι+ + =

≤

∈

� �

� � (5)

The values of the constraint limits could be different in different contingencies, including
changes in monitored elements.  Extension of this model to allow other changes in dispatch or
control parameters present no problem in principle, but would add to the complexity of the notation.
The set of constraints and balancing equations would be different for each contingency

If we treat normal operations as the contingency 0ω = , then the combined set of constraints
on the dispatch would be:

( )
( )

, , 0, 0,1, 2, , ,

, , 0, 0,1,2, , ,

.

t
s s

s

L y y u y y N

K y y u N

u U

ω ω ω

ω ω

ι ω

ω

+ + = =

≤ =

∈

� � "

� � "

The security-constrained economic dispatch imposes all these constraints on the net loads in
advance of the realization of any of the contingencies.  However, since the swing bus net load is
different in every contingency, we subsume the load balance impacts for 0ω > in the definition of

                                               
24 Jacqueline Boucher, Benoit Ghilain, and Yves Smeers, "Security-Constrained Dispatch Gives Financially
and Economically Significant Nodal Prices," Electricity Journal, November 1998, pp. 53-59.
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the constraints, and keep explicit only the loss balance in normal conditions.  Then with the

appropriate change in notation with ( ( )0 ,t t
sy y y= � ), we arrive at a compact representation of the

constraints as:

( )

( )

( )
( )

( )

( )

0 0

1 1

, 0,

, ,

, ,

, 0,
, ,

, ,

.

t

s

s

s

N N
s

L y u y

K y y u

K y y u

K y u
K y y u

K y y u

u U

ω ω

ι+ =

 
 
 
 
 
≡ ≤ 
 
 
 
   

∈

� �

� �

#

� �

#

� �

With this notational convention, we can then restate the security-constrained economic
dispatch problem as:

( )

( )
( )

,

. .

, 0,

, 0.

y u U

t

Max B y

s t

L y u y

K y u

ι

∈

+ =

≤

(6)

However, we now recognize that the single loss balance equation that affects the benefit
function is appended by many contingency constraints that limit normal operations.  If there are
thousands of monitored elements for possible overloads of lines, transformers, or voltage
constraints, and there are hundreds of contingencies that enter the protection set, the total number of
constraints in K would be on the order of hundreds of thousands.  This large scale is inherent in the
problem, and a challenge for FTR models.

It is a remarkable fact that system operators solve just such contingency-constrained
economic dispatch problems on a regular basis.  Below we summarize a basic outline of a solution
procedure to capture the elements relevant to the FTR formulations.  This method exploits a
relaxation strategy and the feature that as we get closer to the actual dispatch, the pattern if loads is
better known and the list of plausible contingencies and monitored elements reduces accordingly.
Anticipating the discussion of FTRs, however, the larger potential set of constraints would be
relevant.

Under the assumed optimality conditions, the corresponding prices obtained from the
solution appear as:

( ) ( ) ( )* * * * *, , .t t t
y yp B y L y u K y uλι λ η= ∇ = + ∇ + ∇

Hence, the congestion cost could arise from any of the (many) contingency constraints.
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Market Equilibrium

The security-constrained economic dispatch problem has the familiar close connection to the
competitive partial equilibrium model where market participants act as profit maximizing or welfare
maximizing price takers.

Assume that each market participant has an associated benefit function for electricity
defined as ( )i iB y , which is concave and continuously differentiable.25  In FERC terminology, the

market participants are the transmission service customers.  The customers' benefit functions can
arise from a mixture of load or demand benefits and generation or supply costs.  In this framework,
the producing sector is the electricity transmission provider, with customers injecting power into the
grid at some points and drawing power out of the grid at other points.  The system operator receives
and delivers power, coordinates a spot market, and provides transmission service across locations.

The competitive market equilibrium applied here is based on the conventional partial
equilibrium framework that stands behind the typical supply and demand curve analysis.26  The
market consists of the supply and demand of electric energy and transmission service plus an
aggregate or numeraire "good" that represents the rest of the economy.  Each customer is assumed
to have an initial endowment iw� of the numeraire good.  In addition, each customer has an

ownership share si in the profits "π " of the electricity transmission provider, with 1i
i

s =∑ .

An assumption of the competitive model is that all customers are price takers.  Hence, given
market prices, p, customers choose the level of consumption of the aggregate good, ci, and electric
energy including the use of the transmission system according to the individual optimization
problem maximizing benefits subject to an income constraint:

                                               
25 A sufficient condition for these to obtain would be that the demand and supply functions at each node are
continuous, additively separable and aggregate into a downward sloping net demand curve.  The benefit function
would be the area under the demand curves minus the area under the supply curves in the usual consumer plus
producer surplus interpretation at equilibrium.  To avoid notational complexity, the assumption here is that each
participant has a continuously differentiable concave benefit function defined across the net loads at every location.
Concavity is important for the analysis below of the equivalence of economic dispatch and market equilibrium, if
there is a market equilibrium.  This would eliminate from this competitive market analysis the related unit
commitment problem which includes non-convex start-up conditions.  As is well known, in the presence of non-
concave benefit functions there may be no competitive market equilibrium.   Differentiability can be relaxed, with
no more than the possibility of multiple equilibrium prices.  Restricting the benefit function to definition at a subset
of the locations would be more realistic, but different only in the need to account for the corresponding variable
definitions.  It would not affect the results presented here.  In practice, as is often assumed, the benefits functions
may be separable across locations.

26 The partial equilibrium assumptions are that electricity is a small part of the overall economy with
consequent small wealth effects, and prices of other goods and services are approximately unaffected by changes in
the electricity market.  See Mas-Colell, A., M.D. Whinston, and J.R. Green, Microeconomic Theory, Oxford
University Press, 1995, pp. 311-343.  Importantly, we adopt here a relaxed set of assumptions that do not include
convexity of the set of feasible net loads.
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( )
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(7)

In this simple partial equilibrium model of the economy, there is only one producing entity,
which is the system operator providing transmission service.  Under the competitive market
assumption, the producer is constrained to operate as a price taker who chooses inputs and outputs
(yi) that are feasible and that maximize profits.  The profits amount to t

i
i

p yπ = ∑ .  Hence, the

transmission system operator's problem is seen as:
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s t
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∈

=

+ =

≤

∑ (8)

Of course, the transmission service provider is a monopoly and would not be expected to
follow the competitive assumption in the absence of regulatory oversight.  However, the
conventional competitive market definition provides the standard for the service that should be
required of the system operator.27

Given the initial endowment of goods iw� , and the ownership shares si, a competitive market

equilibrium is defined as a vector of prices, p, profits, π , controls, u, and a set of net loads, iy , for

all i that simultaneously solve (7) and (8).

A competitive equilibrium will have a number of important properties that we can exploit.
First, note that i i

i i

c w=∑ ∑ � , which is implied and necessary for feasibility.  Furthermore, every

customer's income constraint is binding and the derivative of each benefit function will equal the
common market prices, t

ip B= ∇ .  Hence, the equilibrium price at each location is equal to the

market clearing marginal benefit of net load and the marginal cost of generation and redispatch to
meet incremental load.

                                               
27 It is the standard formulation to include both the consumption (7) and production (8) sectors as part of the
definition of competitive market equilibrium.  Failure to follow this well established convention leads to confusion
when the term "market equilibrium" is applied excluding the producing sector in (8), as in Wu, F., P. Varaiya, P.
Spiller, and S. Orren, "Folk Theorems on Transmission Access," Journal of Regulatory Economics, Vol. 10, No. 1,
1996, pp. 5-24.  For a further discussion of equivalence results, see Jacqueline Boucher and Yves Smeers,
"Alternative Models of Restructured Electricity Systems, Part 1: No Market Power," Operations Research, Vol. 9,
No. 6, November -December 2001, pp. 821-838.
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Finally, a motivation for the connection with economic dispatch is that a market equilibrium

{ }( )* *,iy u  must also be a solution to the economic dispatch problem with ( ) ( )i i
i

B y B y=∑ .  If

not, there would be a set of feasible net loads { }1iy with ( ) ( )1 *
i i i i

i i

B y B y>∑ ∑ .  Therefore, by

concavity of B we would have:

( ) ( ) ( ) ( )( )1 * 1 * 1 * 0.t
i i i i i i i i i

i i i

p y y B y y B y B y
 − = ∇ − ≥ − > 
 
∑ ∑ ∑

But this would violate the optimality of { }( )* *,iy u .  Hence, a market equilibrium is also a solution

to the economic dispatch problem.

Therefore, under the optimality conditions assumed, the market equilibrium would satisfy
the same local first-order necessary conditions as an optimal solution to the economic dispatch.  In
particular, for a market equilibrium we have the pricing condition that:

( ) ( ) ( )* * * * *, , .t t t
y yp B y L y u K y uλι λ η= ∇ = + ∇ + ∇

Another way to look at this problem is to interpret the equilibrium as satisfying the "no
arbitrage" condition.  At equilibrium, there are no feasible trades of electric loads in (8) that would
be profitable at the prices p.  Hence, let 1y  be any other feasible set of net loads, such that there is a

1u  with:

( )
( )

1 1 1

1 1

1

, 0,

, 0,

.

tL y u y

K y u

u U

ι+ =

≤

∈
Then by (8), we have,

( )* 1 0.tp y y− ≥ (9)

This no arbitrage condition will be important as part of the analysis of revenue adequacy in
the FTR formulations.  Importantly, the condition allows for the controls to change from *u .  This
implies a great degree of flexibility in changing the dispatch while maintaining the no-arbitrage
condition for a market equilibrium.

Linear Approximation of Constraints

The full AC security-constrained economic dispatch problem is a large optimization
problem with very many constraints.  Solution procedures for solving this problem often rely on
local linearizations of at least the constraints and exploit the condition that in any particular
dispatch only relatively few (tens to hundreds) of the many potential constraints might be
binding.
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One motivation for the linearization follows from the first order conditions for an

optimum.  Suppose we have a solution to the economic dispatch problem at ( )* *,y u .  The usual

Taylor approximation gives:

( ) ( ) ( )

( ) ( ) ( )
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* * * *

*
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* * * *
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y y
L y u L y u L y u
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K y u K y u K y u

u u

 −
≈ + ∇  − 

 −
≈ + ∇  − 

Then if we have a solution that satisfies the first order conditions for the security-constrained
economic dispatch problem (6), this would also satisfy the first order conditions for the
linearized constraints as in:
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 −
+ ∇ ≤ − 

If the functions are well behaved, then finding a solution to this approximate problem might
also provide a good estimate of the solution to the full problem.  Although the functions are not so
well behaved as to be everywhere convex, practical computational approaches for solving this
problem search for a solution that satisfies the first order conditions.  It is not fail safe, and when it
fails other approaches would be necessary.  However, given a starting point close to the optimum,
and some judicious choices, this approximation can work well.  Since the actual dispatch involves
reoptimization starting with a good solution from the immediate previous period, as well as
feedback from metering actual flows and a fair bit of operator judgement, this linearization of the
model can be a reasonable approximation. However, as discussed below, the linearization changes
with the dispatch.

The local linear approximation suggests an outline for solving this large problem through a
familiar relaxation approach by ignoring non-binding constraints.28

                                               
28 Arthur M. Geoffrion, “Elements of Large-Scale Mathematical Programming, Parts I and II,” Management
Science, Vol. 16, No. 11, July 1970, pp.  652-691.
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Relaxation Solution Procedure

Step1:  Select an initial candidate solution ( )0 0,y u , ignore most (or all) of the constraints in

the economic dispatch using only the small subset ( )0 ,K y u , and set the iteration

count to m=0.

Step 2: Construct the relaxed master problem as:
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 −
+ ∇ + = − 

 −
+ ∇ ≤ − 

Let a solution be ( )1 1,m my u+ + and update m=m+1.

Step 3: Check to see if the candidate solution ( ),m my u violates any of the constraints in (6).

If so, create a new ( ),mK y u  including some or all of these constraints and repeat

Step 2.  Else done.

The central idea here is that the master problem is much smaller than the full problem and
relatively easy to solve.  With judicious choices of the initial solution and constraint set, the method
works well in practice with relatively few iterations required.  In the case that the objective function
is represented by a piecewise linearization (as would be true naturally with step-wise representation
of supply and demand), the master problem is a linear program for which there are efficient
algorithms.  Furthermore, in the case of this dispatch problem, evaluation of constraints in Step 3
requires only that a standard load flow be solved for each contingency.  Although not trivial, this is
well-understood albeit non-linear problem.

One difficulty with this computational approach is the need to calculate ( ),m m mK y u∇ .29

This gradient is the set of "shift factors" summarizing the marginal impact on constraints from
changes in the loads and controls.  Although it is possible to solve the load flow problem exploiting
the sparsity of the network arising from the few links connected to each bus, this sparsity depends
on explicit representation of the angles and voltage magnitudes.  By contrast, the inverse
presentation in ( ),K y u  is dense.  In a sufficiently meshed network, every net load affects every

constraint.  Hence, virtually every element of ( ),m m mK y u∇  could be non-zero.  Part of the art of

                                               
29 For more detail on the construction of the gradients, see James D. Weber, "Implementation of a Newton-
Based Optimal Power Flow into a Power System Simulation Environment," MS Thesis, University of Illinois at
Urbana-Champaign, Urbana, Illinois, 1997.
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implementation of this computational outline is in the details of exploiting sparse representations to

evaluate load flows, and minimizing the need to calculate or represent ( ),m m mK y u∇ .  Such

commercial dispatch software is well developed and in regular use.30

Further note that in general ( ) ( )1 1 2 2, ,m m m mK y u K y u∇ ≠ ∇ , and this may require frequent

updates of the linearization.  Finally, in general we have:

( ) ( ) ( ) ( )
1 2

1 1 1 1 2 2 2 2

1 2
, , , , .

m m
m m m m m m m m

m m

y y
K y u K y u K y u K y u

u u

   
− ∇ ≠ − ∇   

   

Hence, the "right hand side" of the linearized constraint can be different for each candidate solution.
These differences can be quite large, especially for interface constraints in DC-Load
approximations. 31

This presents no difficulty in principle for the dispatch problem.  However, these
complications are relevant in the discussion of the DC-Load model and in the adaptation of the
security-constrained economic dispatch formulation for FTR auctions.

DC-Load Approximations

A common simplification of the load flow model for real power is known as the DC-
Load approximation.32  In terms of the present discussion, the DC-Load model adds further
restrictive assumptions that allow us to ignore both real power losses and reactive power loads in
determining the real power flows, further specializing the linearization of the constraints.

The key assumptions include:

•  there is sufficient reactive power net load at each bus to maintain per unit voltages equal
to 1.0 ( 1.0iV ≈ );

•  all phase angle settings are at zero angle change and a fixed tap ratio for transformers
( 1.0, 0t α= = );33

                                               
30 For example, firms providing such software include ALSTOM ESCA Corporation, Nexant, Inc., Open
Access Technology International, Inc.
31 For examples, see William W.  Hogan, "Flowgate Rights and Wrongs," Center for Business and
Government, Harvard University, August 2000.
32 F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R.E. Bohn, Spot Pricing of Electricity, Kluwer
Academic Publishers, Norwell, MA, 1988, Appendices A and D.  The DC-Load flow refers to the real power half of
the nonlinear AC load flow model.  Under the maintained assumptions, there is a weak link between the reactive power
and real power halves of the full problem.  And the real power flow equations have the same general form as the direct
current flow equations in a purely resistive network; hence the name "DC Load Flow."
33 For simplicity, we can assume that the ideal transformers with a fixed tap ratio have been incorporated in a
per unit normalization, which results in a simplified Π -equivalent representation of a transmission line.  See the
appendix for further details
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•  the voltage angle differences across lines are small.

These assumptions imply a choice of controls ( 0u u= ) that yield full decoupling between
real and reactive power flow and no transmission losses.  The real power flow in (1) reduces to:

  [1 - cos(  - ) ]  sin(  - ),

  [ 1- cos(  - ) ]  sin(  - )  .

Pijk k i j k i j

Pjik k j i k j i

z G

z G

δ δ δ δ
δ δ δ δ

= + Ω

= + Ω

Under the small angle difference assumption, we have:

( )
( )

cos  - 1,

sin  -  - .

i j

i j i j

δ δ

δ δ δ δ

≈

≈

Hence, the real power flow approximation becomes:

( ) ( )      -     - .Pk Pijk k i j Pjik k j iz z zδ δ δ δ= = Ω = − = −Ω

This linearity produces a substantial simplification. Let:

Ω = the diagonal matrix of line transfer factors,

z = the vector of line flows ( Pkz ) in the DC-Load approximation.

Then, with our sign conventions we have:

,

.

ty A z

z Aδ
= −
= Ω

Furthermore, the inversion that eliminates the angles as in (2) reduces to another linear
equation for the DC-Load formulation with

( )00, .yH K u= ∇

This is the matrix of shift factors.  Under the DC-Load assumptions, ( )0H H= � , where

( ) 1tH A A A
−

= −Ω Ω� � ��  with the swing bus dropped in defining A� .34  Although A is sparse, the matrix

of shift factors is dense, meaning that nearly every net load affects nearly every line.  Calculating
an element of row of H, meaning the shift factors for a particular line in a particular contingency, is
about the same amount of work as finding a DC-Load flow for that contingency.

For a given contingency the matrix that links the angles and the net loads, as in

,ty A Aδ= − Ω

                                               
34 Also the transfer admittance matrix as described in Schweppe et al., 1987, p. 316.



23

is quite sparse, with the only non-zero elements being for the nodes that are directly connected.
Furthermore, solving for the angles given the vector of net injections, y, involves no more than
finding a particular solution for a set of linear equations.  In general, this is much less work than
solving for the full matrix inverse, and in advanced optimization algorithms this is done quickly
and cheaply using sparse matrix techniques.  Once the vector of angles is known for a given set of
net loads, it is an easy matter to complete the one matrix multiplication to obtain the complete load
flow in z for each contingency.  The import of all this is the simplicity of evaluating a particular
load flow as compared to calculating the full transfer admittance matrix in H.

Note that calculating a particular row of H is about the same order of difficulty as
evaluating the load flow for that particular contingency.  Let iε  be the elementary row vector with
all zeros but a 1 in the ith position.  We can obtain any row of H, say hi, as the solution to a set of
sparse linear equations.  By construction:

( ) 1
.i i t

ih H A A Aε ε
−

= = − Ω Ω� � ��

Hence, we have the sparse system:

( ) .t i
ih A A AεΩ = − Ω� � � (10)

In other words, calculating a complete load flow for all the lines is about as much work as
calculating the shift factors for one line. Both require solution of a sparse set of linear equations of
the dimension equal to the number of nodes.  There are specialized sparse matrix techniques for
this computation as a part of commercial dispatch software.

With these approximations, the constraints could be restated as:

( )0

0,

0, 0.

t y

K u Hy

ι =

+ ≤

Letting ( )00,b K u= − , the familiar DC-Load restatement of the security-constrained economic

dispatch becomes:

( )
. .

0,

.

y

t

Max B y

s t

y

Hy b

ι =
≤

(11)

It is an easy matter to extend the definition of H to include other linear constraints on y,
including interface constraints expressed as limits on aggregations of flows on lines.

As above, the matrix H for the full security-constrained problem is very large and dense, and
successful solution of the security-constrained economic dispatch exploits approaches such as the
relaxation algorithm outlined above that avoid unnecessary computation of the elements of H and
include only the binding constraints.  Furthermore, the DC-Load model is convex and the relaxation
algorithm will assure convergence to a global solution.
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As discussed below, many models for transmission rights exploit the specialized structure of
(11) to simplify the problem and guarantee various equivalence conditions between and among
different FTRs.  In this context, it is important to remember that (11) is only a simplified
approximation and that key elements of these assumptions are violated by regular operating
conditions in the system.  The different approximations have different effects on the alternative FTR
models and the associated auction problems.

Here we consider the implications of various modifications of these assumptions.  Suppose
that the phase shifting transformers are set to shift the angles.  If we hold the angle shifts fixed, then
the approximation under the other DC-Load assumptions becomes:

( )     -  .Pk k i j k kz δ δ α= Ω + Ω

In principle, this changes the inversion in (2) to eliminate the bus angles such that even
under zero net loads there would be real power flow on all the lines in order to maintain balance at
every node.  This preserves linearity and a constant H, but changes the residual limits for the
constraints.  Hence, we would have ( )b b α= , meaning that the limits on the power flow equations

would be changing to reflect the phase angle settings.  In principle, a phase shift on one line could
affect the residual limit on every line.

If the ideal transformer tap ratio (t) were to change from 1.0, there would be a modified Ω̂
to reflect the changing impedance. In addition, the inversion depends on the topology of the
network as summarized in A.  This may change from one dispatch to another.  In each case, the
inversion to eliminate the voltage angles and the associated linearization of the constraints actually
depends on the values of ( , ,t Aα ).  To the extent that these are treated as variables in the economic
dispatch, their constraints in U create additional non-linearities.  For instance, if a phase-shifting
transformer is controlling flow but reaches a limit on the ability to control a line, the representation
of the phase angle regulator changes.  Although the details depend on the particular case, if there is
any possibility of actual changing the topology or settings of phase-shifting transformers, even for

the simplified real power only DC-Load approximation we have ( ) ( )0 00,yH u K u= ∇ and
0 0( ) (0, )b u K u= − .  In other words, the linear approximation is not the same across the dispatches.

Therefore, the security-constrained, economic dispatch of the DC-Load approximation
could be written as:

( )

( ) ( )0 0

. .

0,

.

y

t

Max B y

s t

y

H u y b u

ι =

≤

(12)

When this problem is solved at any given hour, for fixed 0u  the resulting model takes on the
form of the DC-Load approximation.  Both constraint limits and shift factors adjust regularly.
Hence, it is important below to be explicit about the fact that the linearizations, and therefore, the
model itself, changes from dispatch to dispatch, especially for any changes in topology A.
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Finally, in addition to these changes, other slight modifications of the DC-Load model retain
most of the computational simplicity but make the approximation further sensitive to the non-linear
properties of the system.  For example, consider incorporating line losses:

( ) ( ),1,1,0 2 2cos .Pk k i jl =Gδ δ δ − − 

Using the approximation that for small angle differences,

( ) ( )2
cos 1 ,

2
i j

i j

δ δ
δ δ

−
− ≈ −

the approximate line losses are:

( ) ( ) ( )2 2,1,1,0 2 2cos .Pk k i j k i j k Pkl =G G r zδ δ δ δ δ − − ≈ − ≈ 

Here we have used the condition that k kr x<< .35

Define R as the diagonal matrix of line resistances, A  as the matrix of the absolute values

of the incidence matrix, and 2z as the vector of squares of the individual line flows.  Then we could
include losses in the economic dispatch problem that is almost like the DC-Load model:36

21
2

( )

, ,

. .

,

,

0,

.

tt

s

Max B y

y z

s t

y A z A Rz

z A

z b

δ

δ
δ

= − −
= Ω
=
≤

Note that this computational form of the problem does not need a separate overall balance
equation, as this is accounted for in the individual node equations.  Hence, we have net loads
(generation) balancing losses as in:

( ) ( ) 2 21
2 .

tt t t t t t tg d d g y A z A Rz Rzι ι ι ι ι ι− = − − = − = + =

This is no longer a linear problem, but the addition of the few quadratic terms in the node
balance equations is easier to deal with than a full AC model.  However, this simplified
formulation would capture some of the interaction between losses and congestion, with the
additional power flows needed to account for losses adding to losses and congestion.  The

                                               
35 This approximation applies to high voltage systems, but is less usable on lower voltage circuits.
36 This approach is from Transpower in New Zealand.
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inverse linearization of the solution in terms of the net loads would now differ further from the
pure DC-Load approximation.

POINT-TO-POINT FINANCIAL TRANSMISSION RIGHTS

Financial transmission rights are defined in terms of payments related to market prices.
Although many years were spent in the search for well-defined and workable physical
transmission rights, the complexity of the grid and rapidly changing conditions of the real market
outcomes made it impossible to design physical rights that could be used to determine the use of
the transmission system.37  By contrast, financial transmission rights specify payments that are
connected to the market outcomes but do not control use of the system.  Rather, the actual
dispatch or spot market produces a set of market-clearing prices, and these prices in turn define
the payments under the FTRs.

The system operator accepts schedules and coordinates the spot market as a bid-based,
security-constrained, economic dispatch.  The resulting locational prices apply to purchases and
sales through the spot market, or the difference in the locational prices defines the price for
transmission usage for bilateral schedules.  The need for transmission rights to hedge the
locational price differences leads to the interest in FTRs. 38

PTP Obligations

The definition of point-to-point (PTP) forward obligations as FTRs follows closely the
notion of bilateral transmission schedules.  A generic definition includes both balanced and
unbalanced rights.  Given a vector of inputs and outputs by location, the kth PTP forward
obligation is defined by

0

.0

0

i
f

k

j

g

PTP

d

 
 − 
 =
 
 
  

With a corresponding vector of market clearing prices, this FTR is a contract to receive

                                               
37 For further details , see Scott M. Harvey, William W. Hogan, and Susan L. Pope, “Transmission Capacity
Reservations and Transmission Congestion Contracts,” Center for Business and Government, Harvard University,
June 6, 1996, (Revised March 8, 1997).
38 For further discussion of market structure, see John D. Chandley and William W. Hogan, “Independent
Transmission Companies in a Regional Transmission Organization,” Center for Business and Government,  Harvard
University, January 8, 2002.
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0

.0
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i
t f t
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 
 − 
 = = −
 
 
  

Although any such vector could be allowed, it is clear that any such FTR could be
restated as a mix of balanced and unbalanced rights:

0 0

.0 0

0

0 0

j i j
f

k

j

d g d

PTP

d

   
   − −   
   = −
   
   
      

Motivated by the discussion of options below, it is convenient to define two types of
forward obligations, balanced ( f

kτ ) and unbalanced ( f
kg ), such as

0 0

0

, .0

0

0 0

f f
k k

x

g g

x

τ

   
   −   
   = =
   
   
      

We can think of the balanced PTP-FTRs providing for the same input and output at different
locations.  More generally, all that is required of a balanced PTP-FTR is that the inputs and
outputs sum to zero, 0t f

kι τ = .  The unbalanced FTRs can be thought of as forward energy sales

at any location and would be a contribution towards losses to balance the system.  The notation
suggests that individuals could hold either or both types of PTP-FTR forward obligations, and
there is no need that the locations be the same.

The intended role of the PTP-FTR is to provide a hedge against variable transmission
costs.  If a market participant has a balanced FTR between two locations and schedules a
corresponding bilateral transaction with the same inputs and outputs (x), then the charge for

using the system would be ( )j ip p x− , which is exactly the payment that would be received

under the FTR.  Hence, the balanced FTR provides a perfect hedge of the variable transmission
charge for the bilateral transaction.

The holder of an unbalanced forward obligation FTR has an obligation to make the
payment equal to the value of the energy at the relevant location.  If the holder also sells an equal
amount of energy at the same location in the actual dispatch, the payment received for the energy
is ip g , equal to the payment required under the FTR.   Hence, we can think of the unbalanced

FTR as a forward sale of energy.   Although in principle there would be no difficulty in allowing
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negative unbalanced PTP-FTRs, equivalent to forward purchases of energy, it is convenient to
interpret unbalanced PTP-FTR obligations as forward sales of energy.

In this case of obligations, the PTP-FTRs are easily decomposable.  For example, an FTR
from bus 1 to bus 2 can be decomposed into two PTP-FTR obligations from 1 to a Hub and the
Hub to 2.  The total payment is ( ) ( ) ( )2 1 2 1HUB HUBp p p p p p− + − = − .  This provides support for

trading at market hubs and the associated trading flexibility.  Periodic FTR auctions provide
other opportunities to obtain other reconfigurations of the pattern of FTRs

An attraction of the FTR is that the spot market can operate to set the actual use of the
transmission system and the FTRs operate in parallel through the settlements system to
administer financial hedges.  Importantly, the system of payments will be consistent as long as
the set of PTP-FTRs satisfies a simultaneous feasibility condition.

Revenue Adequacy

Suppose that we have a set of balanced ( , 1,...,f
k k Nτ = ) and unbalanced ( , 1,...,f

kg k N= )

PTP-FTRs obligations for any possible locations.  Consider the constraints from the security-
constrained dispatch in (6) or equivalently in (8). We say that the set of FTRs is simultaneously
feasible if there is a u U∈ such that:

( )
( )

,

, 0,

, 0.

f f
k k

k k

t

y g

L y u y

K y u

τ

ι

= −

+ =

≤

∑ ∑
(13)

Assume the set of PTP-FTR forward obligations is simultaneously feasible.  If we have a
market equilibrium ( * *, ,p y u ) in the spot market, then from (9) it follows immediately that we
meet the revenue adequacy condition,

( )* * * 0.t t f f t f f t
k k k k

k k k k

p y p g p y g p y yτ τ   − − = − + = − ≥   
   
∑ ∑ ∑ ∑

In other words, at the market equilibrium prices the net payments collected by the system operator
through the actual dispatch ( *tp y ) would be greater than or equal to the payments required under

the PTP-FTR forward obligations t f f
k k

k k

p gτ
  −  

  
∑ ∑ .  This revenue adequacy condition is

general enough to accommodate a great deal of flexibility.

Note that the simultaneous feasibility condition does not require that the set of PTP-FTRs be
feasible at the current set of controls ( *u ) associated with the market equilibrium.  All that is
required is that the system operator could choose a set of controls that would make the PTP-FTRs
feasible.  There could be a very different set of actual operating conditions, including changes in the
configuration of the grid, but as long as the controls and configuration could be set to make the
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PTP-FTRs feasible, the simultaneous feasibility condition holds and revenue adequacy follows.
This is true even though actual physical delivery to match the FTRs would be impossible at the
current settings of the grid controls at *u .  This is an important simplification compared to physical
rights and a primary attraction of using financial rights.

The intuition of revenue adequacy is clear.  If the dispatch of PTP-FTRs were more valuable
than the market equilibrium, in violation of the revenue adequacy condition, the system operator
could have selected this dispatch outcome.  Since we have by assumption a market equilibrium that
differs from the PTP-FTRs, and the PTP-FTRs are simultaneously feasible, the market equilibrium
from (8) must be at least as valuable as the payment obligation under the PTP-FTRs.39

PTP-FTR Auction
Allocation rules for FTRs follow different procedures.  For example, in PJM Load

Serving Entities (LSE) are required to purchase network service and meet installed capacity
requirements. As part of this process, LSEs acquire FTRs.  Grandfathering rules under existing
contracts might be another source of allocation, and so on.

A natural way to allocate PTP-FTR forward obligations would be to conduct an auction.
Suppose that we represent bids for balanced forward-obligations by ( ,f f

k kt τ ) and for unbalanced

forward obligations by ( ,f f
k kgρ ).  Here the first element is the scalar amount of the FTR and the

second element is the vector pattern of inputs and outputs.  For simplicity, we subsume any

upper bounds on the awards are part of the concave and differentiable bid function ( ),f f
k k ktβ ρ .

With these notational conventions, a formulation of the PTP-FTR forward obligation auction
would be:
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( )
( )
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k k k

y u U t k

f f f f
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t
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s t

y t g

L y u y

K y u
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ι

∈ ≥ ≥

= −

+ =

≤

∑

∑ ∑ (14)

A solution of this problem would determine the award of FTRs and the associated market
clearing prices for the awards.  The locational price p

�
 would be of the same form as in the

market equilibrium model, with

                                               
39 The definition of FTRs could be extended to include the sharing rule for allocation of any difference
between the collections and payments.  This is formalized in the market equilibrium model as si.  In practice, the
FTR implementations for existing system redistribute any excess collection to reduce access charges or some similar
purpose.  Although this is a more important issue for defining incentives for system expansion, it does not affect the
analysis here.
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( ) ( )* * * *, , .t t t
y yp L y u K y uλι λ η= + ∇ + ∇

� �� �

However, the prices here would be based on the expected value of the hedge over the many
dispatches to which it applies.  The corresponding market clearing prices for the auction awards
would be the difference in the locational prices for the balanced obligations and the locational price
for loss contributions.  Hence,

( ) ( ), ,
, .f f

k k

f f f f
k k k k k kt f t f

k kf ft g
k k

t t
p p p p g

t

β ρ β ρ
τ

ρ
∂ ∂

= = = − =
∂ ∂

� � � �

By construction, the FTRs would be simultaneously feasible.  In addition to an initial sale
to allocate FTRs for the existing grid, this same format accommodates offers to sell existing
FTRs.  By this means, regular auctions of this form also provide opportunities to reconfigure the
pattern of FTRs.

It is obvious that the PTP-FTR auction problem in (14) is essentially of the same form as
the security-constrained economic dispatch problem in (6) or the market equilibrium problem in
(8), with the addition of a set of simple linear constraints on the net loads as dictated by the bids.
Furthermore, the addition of the linear constraints on the awards could be included in the master
problem of the relaxation solution procedure described above, allowing for a direct adaptation of
familiar optimal dispatch software to solve the auction problem.  This is the essence of the AC-
formulation of the PTP-FTR obligation auction conducted by the New York Independent System
Operator (NYISO), where the computational feasibility of the solution procedure has been
verified in practice.40

In the case of a dispatch that prices losses and includes losses in the PTP-FTRs, the
consistent model anticipates that market participants will take on the forward commitment to
meet the financial requirements for losses.  Various approximations might be considered where
this is a requirement is modified.41  In the early implementations, the focus of PTP-FTRs was on
congestion costs.

PTP-FTR for Congestion
The PJM implementation employs a DC-Load dispatch model similar to (12).42  The

dispatch and the resulting market prices do not explicitly treat marginal losses.  Hence, the prices
differ across locations only due to the effects of congestion.  The PTP-FTRs are defined for
payments on congestion cost, and in this case are the full hedge for the difference in locational

                                               
40 For results of New York auctions, see:

http://www.nyiso.com/markets/tcc_auctions/2001_2002_winter.html .
41 For a further discussion see Scott M. Harvey and William W. Hogan "Loss Hedging Financial
Transmission Rights," Center for Business and Government, Harvard University, January 15, 2002.
42 In PJM, financial transmission rights are called fixed transmission rights (FTR).

http://www.pjm.com/energy/ftr/ftrauc.html .
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prices.  Under this system, the payments for losses are treated as part of an uplift charge, and not
covered by the FTRs.  Since the congestion costs define the only locational price differences
charged or hedged, revenue adequacy follows from the simultaneous feasibility condition for the
PTP-FTRs.

The implementation in New York differs in its treatment of losses.  Losses are included
in the dispatch model and the associated market prices.  However, the PTP-FTRs are defined as
balanced rights only and provide for payment of congestion costs but not the cost of losses.  The
auction for FTRs uses an AC formulation as in (14). Market participants obtain balanced FTRs
and the NYISO includes provisions for losses in the auction, in order to obtain a feasible solution
in the auction.  However, the NYISO does not assume financial responsibility for loss hedges.  In
New York, the FTRs provide a hedge only for congestion costs.43  This New York type
implementation leads to a different version of the revenue adequacy condition.

Let the allocation of balanced FTRs in the auction be f f f
k k

k

tτ τ=∑ .  Choose an arbitrary

unbalanced vector of loss contributions fg  such that ( ),f fgτ  is simultaneously feasible.  Let

there be a market equilibrium ( )* *, ,p y u  from the actual dispatch.  The prices decompose into

the price of generation ( Gp λ= ), the marginal contribution to losses ( ( )* *,t
L yp L y uλ= ∇ ), and

the cost of congestion ( ( )* *,t t
C yp K y uη= ∇ ).  By the simultaneous feasibility of the PTP-FTRs,

we have

( ) ( )* .t t f f t f t t f t f
C G Lp y p g p p p p gτ τ ι τ≥ − = + + −

Define the loss rentals on the FTRs as the difference between the payment for losses at the
marginal cost and the average cost of the losses.  Hence,

( ) .t f t f t t f t f
L L G Lp p g p p p gπ τ ι τ≡ − = + −

If we have these loss rentals as non-negative, 0Lπ ≥ , then the simultaneous feasibility

test coupled with this condition is enough to ensure that the total net payments from the dispatch
are at least as large as the congestion payments under the PTP-FTRs, as in:

* .t t f
Cp y p τ≥ (15)

Since fg  is arbitrary but feasible, we could have chosen fg  to maximize the loss rentals
for the FTRs given the prices for this hour.  In other words, if we have sufficiently inexpensive
locations at which to deem the unbalanced FTR loss contribution, the loss rentals would be non-
negative and along with the simultaneous feasibility condition would be sufficient to ensure
revenue adequacy in the sense of (15) for congestion hedges only.44

                                               
43 In New York, financial transmission rights are called Transmission Congestion Contracts (TCC).
44 It is a conjecture, but not proven, that this "optimized" FTR-loss rental is always non-negative, and that
simultaneous feasibility alone is sufficient for revenue adequacy in this congestion-only case.
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In the case of New York, the loss prices and loss rentals may be small, and the typical
situation would be that losses would be costly with the maximum loss rentals implied for the
FTRs being positive.  Under typical conditions, therefore, simultaneous feasibility would
guarantee revenue adequacy for the congestion payments under the FTRs.

PTP Options

A PTP-FTR obligation is a financial contract for the payment of the locational price
difference.  When matched with a corresponding delivery of power, the charge for transmission
usage just balances the FTR payment, and there is a perfect hedge.  This is true whether or not
the price difference is positive or negative.  If the price difference is negative, the schedule
provides valuable counterflow for which the provider is paid, and the payment from the spot
market dispatch just balances the obligation under the FTR.  There is a perfect match either way.

A natural complement to the PTP-FTR obligation would be a PTP-FTR option that did
not require payment when the price difference was negative.  Hence for the balanced PTP-FTR

option o
kτ  the payment would be ( )max 0, t o

kp τ .  This financial contract might be more attractive

as a tool for hedging purposes, and it is typically the first suggestion from market participants
because of the perception that there is a closer analogy to the presumed option not to schedule
under a physical right.  The option might also be more valuable for speculators who want to trade
rights but don't plan to match the FTR with a schedule.

Unlike obligations, PTP-FTRs are not decomposable in the sense of to and from a hub.
The difficulty is inherent in the option. For example, an FTR option from bus 1 to bus 2 cannot
be decomposed into two PTP-FTR options from 1 to a Hub and the Hub to 2.  The total payment
under the two options would be ( ) ( ) ( )2 1 2 1max 0, max 0, max 0,HUB HUBp p p p p p− + − ≠ − .

Hence, reconfiguration of options would require coordination in a formal auction.

Whatever the merits of the PTP-FTR option, it presents complications that do not arise in
the case of obligations.  The difficulty flows from the simple fact that the dispatch formulation
(6) does not include options; in the real dispatch everything is an obligation.  Hence the auction
model for options does not follow directly from the formulation for economic dispatch.  Further,
the associated settlement rules for options do not follow immediately from the analysis for
obligations.

The analytical problem for options is similar to the problem for physical rights.  Without
knowing all the other flows on the system, it is not possible in general to know if any particular
transaction will be feasible.  Hence, to guarantee feasibility it is necessary to consider all
possible combinations of the exercise of options.  For example, if too few of the other options are
exercised, there may be insufficient counterflow to support a particular transaction; or if all the
options are exercised, some other constraint might be limiting.  This ambiguity does not arise
with obligations, which by definition are always exercised.
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Revenue Adequacy for Options
As with PTP-FTR obligations, simultaneous feasibility of the exercised options is a

necessary condition to guarantee revenue adequacy.45  To demonstrate that simultaneous
feasibility is also sufficient requires an expansion of the definition and test for simultaneous
feasibility.  Once we know which options are exercised, we can treat them like obligations for
settlement purposes, so if the exercised rights are simultaneously feasible, we will have revenue
adequacy.  But the test of feasibility of all possible combinations of exercise of options requires
an expansion of the model.

Here we consider only the possibility of balanced PTP-FTR options, combined with both
balanced and unbalanced forward obligations.   As above, we have a set of balanced
( , 1,...,f

k k Nτ = ) and unbalanced ( , 1,...,f
kg k N= ) PTP-FTR obligations for any possible

locations.  In addition, define the balanced options as ( 0 , 1,...,k k Nτ = ).  Let kx  be the fraction of

each option exercised.  Since different exercise patterns produce different losses, we need some
flexibility in the total loss provision.  As with contingency constraints, we impose this balancing
adjustment at the swing bus.  For the moment, assume the unbalanced obligations are large
enough to ensure that this adjustment is non-negative.  Then for feasibility we require by analogy
to (13) that there is a u U∈ and a scalar balancing adjustment at the swing bus with 0 0sε ≥  such

that:
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Since this must be true for an arbitrary exercise of options and applies to all constraints
collectively, it must be true for each contingency and constraint combination.  A formulation that
allowed for a different u U∈  for each exercise of the options would be the weakest condition.  A
somewhat simpler test that provides a sufficient condition for simultaneous feasibility is to
require that any exercise of the options be feasible for the same u U∈ .46

Consider first the constraints in ( ),K y u .  The constraints do not depend on the value of

y at the swing bus that is merely a balancing adjustment.  Hence, the constraints would be
satisfied if there is a u U∈  such that

                                               
45 The FTRs may be revenue adequate under some dispatch cases without simultaneous feasibility, but not
under all dispatch cases.  For instance, if the FTRs follow the same pattern as the dispatch, but imply even more of
the valuable flows than is feasible, the FTRs would not be revenue adequate.
46 These two definitions would be the same if there is a saddle point for the function

( ) ( )
,

, ,i
i

f y u Max K y uω

ω
= .  However, the usual convexity arguments would not apply to guarantee a saddle

point as it seems unlikely that f would be concave in y.  J. Ponstein, "An Extension of the Min-Max Theorem,"
SIAM Review, Vol. 7, No. 2, April 1965, pp. 181-188.  In any event, the former computational problem appears
more difficult.
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(16)

Recall from (5) above that there is a loss function for each contingency, and many constraints.
Here we represent these loss functions and constraints explicitly to make clear the nature of the
constraints induced by the options.  Hence, define a new function iwω , meaning constraint i in

contingency ω :
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(17)

The notation { }okt refers to the vector of award levels of the options.  Here sε  is the load

adjustment at the swing bus to achieve balanced loads in the contingency.  This notation allows
and anticipates a different solution y for every constraint and contingency combination.
Apparently the condition that the constraint iKω  is satisfied for all possible exercise of options is

equivalent to:

{ }( ), , , 0.f o f
i kw t g uω τ ≤

This iwω  is an optimal-value function, the result itself of an optimization problem.47

However, it is a well-defined function that would allow restatement of the auction problem in
terms of the variables defining the auction awards.

For the contingency we define:
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#

Hence, the sufficient condition in (16) for simultaneous feasibility of PTP-FTRs with options
requires:

                                               
47 K. Shimuzu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming,
Kluwer Academic Publishers, Boston, 1997. p. 188-228.
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Finally, to treat losses and ensure that 0 0sε ≥ , define the worst case for the contribution

of losses and the unbalanced obligations:
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If we have enough loss obligations to meet this maximized exercise of FTR losses, then we have
enough total forward unbalanced obligations to meet or exceed the exercised FTR losses and
ensure that we meet the assumption above that 0 0sε ≥ . Therefore, we set the simultaneous

feasibility condition with PTP-FTR obligations and options as:
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Consider a market equilibrium ( )* *, ,p y u .  Let *oτ  be the corresponding aggregate of

exercised options from the simultaneously feasible combination, { }( ), , ,f o f
kt g uτ .  In other words,

*oτ  is the aggregate of all the options with 0t o
kp τ ≥ .  Then let *

sε  be the difference in the net load at

the swing bus required to achieve balance of the FTR in the pre-contingency case 0ω = , i.e.,
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By construction it must be that * 0sε ≥ .  Further, let
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* *1
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sg g ε
 

= − 
 

.

Then since *fg  differs from fg  only for the swing bus, which is allowed to adjust freely
for each contingency in the definition of w, we have a u U∈ with

{ }( )*, , , 0.f o f
kw t g uτ ≤

Therefore, the exercise of the options must be feasible.  Hence, we have a balanced load that
satisfies every constraint, or
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Following (9) we must have:

( )* 0.tp y y− ≥

The payments under the PTP-FTRs equal ( )* *t f o f t
s sp g p y pτ τ ε+ − = − .  By construction,

* 0sε ≥ .  Hence, if the swing bus price 0sp ≥ , the net revenue from the dispatch will be adequate to

pay out the obligations and exercise of options for the PTP-FTRs.  Typically, *
sε  should be small so

that even with a negative price at the swing bus, any revenue inadequacy would be bounded by the
small value of the difference in losses.

PTP-FTR Auction with Options
With this background, the natural extension of the auction for PTP-FTRs in (14)

becomes:
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(18)
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This is a well-defined model and the objective function is well-behaved.48  The major change
from the AC auction model with obligations only is that the conventional constraint functions K
have been replaced with the more complicated constraint functions w.  Evaluating any element of
the function K requires solving an AC load flow problem, one for each contingency.  Evaluating
any element of w requires solution of an AC optimal power flow problem, one for each
contingency and constraint combination.  This is a significant increase in computational burden.

In a relaxation and sequential approximation approach for solving the AC auction model
with obligations only, the corresponding model from (14) is:
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A computational approach to this problem would exploit the close similarity with security-
constrained optimal dispatch problem.  The sequential approximation approach begins with a
simplified version of the problem that ignores many of the constraints and is solved via a

sequential linearization.  Then a candidate solution ( ) ( )ˆˆˆ ˆ ˆ, ,f fy u t g u= −  is tested for feasibility

by solving a load flow to evaluate ( )ˆ ˆ,iK y uω .  If the constraint is violated, determine the gradient

of the function and impose the new constraint:

( ) ( ) ˆ
ˆ ˆ ˆ ˆ, , 0.

ˆ
t

i i

y y
K y u K y u

u u
ω ω − 

+ ∇ ≤ − 

This linearized constraint would be appended to the auction model, and there would be further
iteration until a solution is found that optimizes the bid function and satisfies all the constraints.
Typically we are limited to search algorithms that find solutions to the first-order Karush-Kuhn-
Tucker (KKT) conditions and, therefore, to a guarantee only of local optimal solutions.

Applying this same idea to the AC auction with options would require a method for (i)
evaluating w and (ii) finding a linear approximation whenever the constraint is violated.

Consider first the question of evaluating a constraint.  For each contingency constraint, a
good guess as to the solution of the unconstrained optimal power flow in (17) would be to use
the DC-Load approximation above to determine the value for x, the pattern of the exercise of the
option.  For each option, if 0o

i kHωτ >  set the corresponding kth element x  to 1, otherwise set the

                                               
48 This is a parametric satisfaction problem in the terminology of K. Shimuzu, Y. Ishizuka, and J. F. Bard,
Nondifferentiable and Two-Level Mathematical Programming, Kluwer Academic Publishers, Boston, 1997, p. 285.
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element to zero.  Let the result be the vector ixω�  that achieves this value for the ith constraint in

contingency ω .  This is the same solution for x that would be obtained in the DC-Load case.

Then compute ˆˆ ˆ,
i

f o o f
i ik k kx

k

K t x t g uω
ω ω τ ∇ + − 
 
∑

�

� , the change in the constraint as we change

the exercise of the options.  If the solution satisfies the condition that the elements of this gradient
vector have positive signs when and only when the corresponding elements of ixω�  are at the upper

bound, then we can show that ixω�  satisfies the first-order conditions for achieving the maximum for

the optimal value function.  If so, then we would expect that this is the optimal solution for iwω , at

least for a well-behaved network.  If the first order condition is satisfied at a local optimum that is
not a global optimum, then an ordinary local search algorithm may not be able to find a global
solution.

In practice, we accept approximate solutions of the first-order conditions as optimal
solutions.  If the problem is well-behaved, then the simple solution based on the DC-Load model
should define the worst-case exercise of options for each constraint without the necessity to conduct
a further search.  (Note that this is not the same thing as saying that the DC-Load estimate of K is
acceptable.  We use the DC-Load guess for the solution x, but use a full AC load flow to evaluate
the constraint).

If the first order condition is not satisfied, then this should be a good starting point for a
search to find an acceptable solution to maximize ( ),iK y uω .  This case would require iterative

solution of an optimal power flow problem for the applicable contingency.  This is easier than
finding the full security-constrained solution for the auction model.

In any event, let the end result of evaluating the optimal value function iwω  be ˆixω , with

corresponding solution ( )ˆ ˆ,y u  where { } ( )ˆ ˆ ˆ ˆ ˆ ˆ, , , ,f f o f f
i k k k k k i

k k

w t t g u K y uω ωτ ρ  = 
 
∑ ∑ .  This gives us an

evaluation of the constraint.  If the value is greater than zero, the constraint is violated.

Recognize that there will be different value of ˆixω , the implied exercise of the options, for

each constraint i and contingency ω .  This is not an obstacle in principle because in using the
optimal-value function we are interested only in the value of the violated constraint and its linear
approximation relative to the option awards, not to the exercised awards. Hence we need only use
the exercised awards temporarily, at each constraint, to evaluate the function and calculate the linear
approximation.49

                                               
49 Note: in the early stages of the computation, we might accept both the DC-Load solution and the associated
DC-Load shift factors as the estimates of the linearized constraint.  However, when close to the solution, the
assumption that the DC-Load model is inadequate means that we need an exact evaluation of both the function and
the linearized representation of any violated constraint.
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In the case of a violated constraint, the optimal-value function is not in general differentiable
or even convex.  However, it does have a generalized gradient ow∂  that serves a similar purpose. 50

In the present application the generalized gradient of the optimal value function iwω  has a simple

form that limits the domain where it is nondifferentiable to those points where some of the
elements of the options awards are zero. These are important points, since not all options will
have positive awards.  Hence, the lack of a regular gradient is relevant.

The following vector will always be an element of the generalized gradient.
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(19)

To see this, note that the special nature of the problem in (17), where the swing bus net
load is determined freely to meet the condition, could be restated as:
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In other words, sy  does not enter the objective function and the resulting gradients depend only

on the objective function derivatives.  At most points, w is differentiable.  But at points where it
is not differentiable, the generalized gradient exists and equals the convex hull of the limit points
of the gradients, including (19).51

                                               
50 Frank H. Clarke, Optimization and Nonsmooth Analysis, SIAM Reprints, 1990, p. 10.  Here we follow the
applications in K. Shimuzu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and Two-Level Mathematical
Programming, Kluwer Academic Publishers, Boston, 1997, p. 28.  A generalized gradient of a function f(x) at the

point x  is defined as ( )o f x∂  in terms of the generalized directional derivative as the set of vectors
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51 K. Shimuzu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming,
Kluwer Academic Publishers, Boston, 1997, pp. 30 &215.
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When the option award is zero, any element in the interval ( )( ) )ˆ ˆ0, , ,o
y i kMax K y uω τ ∇ +∞

would also give rise to a generalized gradient.  Thus the vector { }( )ˆˆˆ ˆ, , ,f o f
i kt g uωφ τ  is an extreme

point of the generalized gradient.  It should give an adequate linear representation of the
constraint function in the range of interest over the non-negative allocations.

For a violated constraint, therefore, the idea is to introduce the linearized constraint:
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This would then serve as a constraint in the sequential approximation of the nonlinear AC auction
problem in the corresponding way that the constraint would enter in the case of obligations only.
For the linear approximation, the usual first order KKT conditions would generalize to finding zero
as an element of the generalized gradient.

As a technical point, this application would depend on a slightly stronger set of
assumptions to guarantee that w is Lipschitz near the solution.  These conditions would apply for
a slightly modified version of the problem where for a sufficiently large value of the penalty M
we redefine the value function as:
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This allows the function to be finite for all { }( ), , ,f o f
kt g uτ  and locally Lipschitz

everywhere. 52  The generalized gradient at a non-differentiable point would be bounded by M,
but the same lower extreme point should define the appropriate local linearization to use in the
large optimization problem.  The sequential linear approximations would use these function
evaluations and selections from the generalized gradient to search for the optimal solution that
satisfied the generalized Karush-Kuhn-Tucker conditions for the master problem.

Relaxation Solution Procedure with PTP-FTR Options

Step1:  Select an initial candidate solution { }( )0ˆˆˆ ˆ, , ,f o f
kt g uτ , ignore most (or all) of the

constraints in the economic dispatch using only the small subset

{ }( )0ˆˆ ˆ ˆ, , ,f o f
i kw g uω τ τ , and set the iteration count to m=0.

Step 2: Construct the relaxed master problem as:
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Let a solution be { }( ) 1
ˆˆˆ ˆ, , ,

m
f o f

kt g uτ
+

and update m=m+1.

Step 3: Check to see if the candidate solution { }( )ˆˆˆ ˆ, , ,
m

f o f
kt g uτ violates any of the

constraints.  If so, create a new { }( )ˆˆˆ ˆ, , ,
m

f o f
i kw t g uω τ  including some or all of these

constraints and repeat Step 2.  Else done.

                                               
52 K. Shimuzu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and Two-Level Mathematical Programming,
Kluwer Academic Publishers, Boston, 1997. p. 214.
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Success with this proposed relaxation procedure for solving the auction problem with
PTP-FTR options depends on the expectation that relatively few of the (very) many contingency
constraints will be binding.  This is a well-established condition in the dispatch model and the
associated PTP-FTR obligation-only auction model that is of the same form as the dispatch.  By
contrast, if the introduction of options produces many more bids and many more binding
constraints, then the scale of the problem may overwhelm current computational capabilities.

A concern with the potential number of binding constraints applies as well to the case of
a DC-Load model for PTP-FTR obligations and options.  However, the DC-Load formulation
would have the computational advantage that evaluation of the constraints and the associated
generalized gradient would be a relatively simple calculation that reduces to calculating the

associated shift factors in ( )0H u  and evaluating the positive elements to construct the

generalized gradient.  In the DC-Load formulation ignoring losses, we would have:
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Combining all the constraints and contingencies, we have
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The corresponding auction model with bids for balanced forward-obligations by ( ,f f
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and balanced forward-option by ( ,o o
k kt τ ) would be
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(20)

Even in the DC-Load case, therefore, this computation is not trivial.  For obligations we
need to evaluate only the load flow for each contingency given fτ , the aggregate of the
obligations.  Following the discussion of (10), this amounts to solving a system of linear
equations for each contingency but evaluates all constraints in that contingency at once.  But in
order to evaluate the constraint in (20), we need to calculate the shift factors for every constraint
in the contingency, each of which involves a similar system of linear equations.  In other words,
in the relaxation algorithm the need to calculate shift factors expands from the violated
constraints only to every constraint when options are included.

Although this does require more computation, the evaluation of the constraints is
separable and efficient means should be available to do the many evaluations, at least in the DC-
Load case.  Furthermore, not every constraint needs to be included in the relaxed master
problem.  As long as the number of binding constraints is small, meaning hundreds and not
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hundreds of thousands, this auction model might accommodate PTP-FTR options and obligations
and be computationally feasible.

By construction of the constraints, exercise of the options along with the obligations
would be simultaneously feasible under the condition that the system operator could select the
set of controls needed to satisfy the constraints for the obligations and exercised options.  Hence,
the revenue collected in the final spot market dispatch would always be sufficient to pay the
amounts required by the various PTP-FTR contracts.

FLOWGATE FINANCIAL TRANSMISSION RIGHTS

An alternative to the PTP-FTR model is the concept of flowgate rights (FGs).  The
definition of flowgate rights encompasses many proposals covering ideas ranging from physical
rights to financial rights.  The basic idea flows from the pure DC-Load model in (11).  If we
think of the constraints as thermal limits on lines, then the shift factors in H define the flow of
power over the lines.  The line or collection of lines would be a "flowgate," and in the physical
interpretation there would be a requirement to obtain the required amount of rights on each
flowgate in order to schedule a transaction.  There are many problems with this physical
interpretation of a flowgate model. 53

Recognizing these problems, the more recent approach to FGs is as financial contracts.
The basic idea is that in the constrained dispatch, the shadow price on the flowgate defines a
market-clearing price for that constraint.  In the financial interpretation, the FG-FTR would be a
contract to collect the shadow price from the actual dispatch for a given quantity of the
constraint.  The dispatch itself would be handled as a bid-based spot market.  However, rather
than focusing on the difference in prices across locations, the financial transaction would focus
on the shadow prices for the constraints.  This financial perspective greatly simplifies the
flowgate formulation, and generalizes easily to the idea of selling constraint limits, not just flows
on lines.  See O'Neill et al. for a review and further development of this financial interpretation
of FG-FTRs.54

The formulation here follows this perspective of defining FG-FTRs as constraint limits.
As with PTP-FTRs, FG-FTRs can be obligations or options, with different implications for
hedging, revenue adequacy and computational requirements.

                                               
53 William W.  Hogan, "Flowgate Rights and Wrongs," Center for Business and Government, Harvard
University, August 2000.  Larry E. Ruff, "Flowgates, Contingency-Constrained Dispatch, and Transmission Rights,"
Electricity Journal, Vol. 14, No. 1, January/February 2001, pp. 34-55.
54 Richard P. O'Neill, Udi Helman, Benjamin F. Hobbs, William R. Stewart, and Michael H. Rothkopf,  "A
Joint Energy and Transmission Rights Auction: Proposal and Properties," Federal Energy Regulatory Commission,
Working Paper, February 2002.
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FG Obligations

Returning to the bid-based, security-constrained, economic dispatch in (6) as the
motivation, first introduce the FG-FTR forward obligation f

kf , defined as a vector of the

dimension of the number of constraints.  The FG-FTR forward obligation can be viewed as the
financial analogue of a physical change in the constraints of (6) as in:
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Hence, if the FG-FTR is non-negative, the capacity of the respective constraint available for use
is reduced by the amount of the FG-FTR.  And if the FG-FTR obligation is negative, the
constraint capacity increases accordingly.  In the simplest case, as often intended in various
flowgate models, the FG-FTR is zero for all but one of the constraints.  In this case, the FG-FTR
obligation would consume or produce capacity for a single constraint, independent of all the
others.  The more general formulation here, following O'Neill et al., allows for flexibility in
imposing interactions among the constraints.55  In particular, in order to construct an equivalent
of a PTP-FTR obligation, it would be necessary for the FG-FTR to include non-zero amounts for
every constraint that would be affected by a transaction.

This physical interpretation of consuming or producing capacity on a constraint is
intuitive, but it is not the definition of the right.  In the actual dispatch, for instance, the flowgate
rights do not enter.  The definition of the financial right, therefore, depends on the prices
obtained from a market equilibrium.  A market equilibrium solution to (6) or (8) would produce
locational prices

( ) ( ) ( )* * * * *, , .t t t t
y y G L Cp B y L y u K y u p p pλι λ η ι= ∇ = + ∇ + ∇ = + +

Spot market transaction or bilateral schedules ky  to use the grid would be charged t
kp y .  This

creates a volatile expense for which the FG-FTR is intended to provide components that can be
assembled into a hedge that, ideally, could match the transmission charge.

The shadow prices on the constraints η  would be used in the FG-FTR to define a payment
t f

kfη .  Note that given the formulation of the market model, the show price is always

nonnegative, 0η ≥ .  In the simplest case of a single constraint, the payment would be just the
shadow price times the amount of the FG-FTR on that constraint.  If the flowgate obligation is
positive, then the holder in effect owns that part of the constraint and receives its market value.
If the flowgate obligation is negative, the owner must make a payment to cover the market value
of the additional capacity.

                                               
55 The terminology in O'Neill et al. refers to this as a flowgate option, but then describes it as an obligation
when the sign is negative.  See discussion below about the terminology of options and obligations.
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A motivation for the FG-FTR is to construct a hedge against changing congestion costs.
In an actual market equilibrium, the congestion cost component of the price difference would be

( )* *,t
y kK y u yη ∇ .  Hence, if the FG-FTR values had been selected long before as

( )* *,f
k y kf K y u y= ∇  for transaction ky .  By definition, there would be hundreds of thousands of

elements in this f
kf .  The FG-FTR hedge would be the same as the charge for congestion with

t f t
k c kf p yη = .  This hedge would not extend to the cost of losses.

Another motivation for the FG-FTR formulation is that the FG-FTR is easily
decomposed, and in principle could support a secondary market with separate trading for FG-
FTRs for each constraint.  This ease of trading and hedge construction are in tension.  It is one to
anticipate trading of FG-FTRs for individual constraints.  It is another matter to assemble these

to construct a hedge with ( )* *,f
k y kf K y u y= ∇ .  It would be difficult to do either, much less

both.

In order to construct such a hedge with the PTP-FTR obligation between two locations, it
is only necessary to specify the volume and the two locations.  In order to construct an equivalent
hedge with the FG-FTR obligation, in principle it would be necessary to identify the required
FG-FTR obligation amount on each of the potentially hundreds of thousands of affected
constraints.56  To the extent that some or all of the constraints are neglected, the FG-FTR
provides an incomplete hedge.

The problem of constructing the FG-FTR hedge would be compounded in any but the

pure DC-Load case by the changing values of ( )* *,yK y u∇ , which could be different for every

dispatch.  The definition of O'Neill et al. for the financial right assigns the risk of these changing
shift factors to the holder of the FG-FTR.  This is also the proposal for the Midwest ISO57 and the
rule anticipated by FERC. 58  The congestion payment under the FG-FTR might be more or less
than the congestion charge for any particular transaction.  In the aggregate, however, there is a
straightforward condition to ensure revenue adequacy for the system operator.

Revenue Adequacy
Revenue adequacy of the FG-FTRs follows from a variant of a simultaneous feasibility

condition.  The typical discussion of the FG-FTRs builds from a DC-Load framework where at
no load there are no losses.  In the AC model, however, this may not be true and we have to
allow for some (probably small) generation to cover losses depending on the settings of the
                                               
56 The same problem plagues the physical flowgate model. "…implementing Chao and Peck's [flowgate]
proposal requires that all contingent (link based) TCR [flowgate] markets clear, an impossible task to achieve in
practice."  Jacqueline Boucher and Yves Smeers, "Alternative Models of Restructured Electricity Systems, Part 1:
No Market Power," Operations Research, Vol. 9, No. 6, November -December 2001, p. 828.
57 Midwest Independent System Operator, "MISO Long-Term Congestion Management Straw Proposal,"
October 8, 2001, p. 19.
58 Federal Energy Regulatory Commission, “Working Paper on Standardized Transmission Service and
Wholesale Electricity Market Design,” Washington, DC, March 15, 2002, pp. 10-11.
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controls u.  Suppose the collective FG-FTR obligations f f
k

k

f f=∑ satisfy the feasibility

condition that there is a u U∈ and the minimum forward unbalanced generation obligation, fg ,
to cover no load losses such that:

( )
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, 0.
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− + ≤

As obligations, the FG-FTRs could be positive or negative.  And by judicious choice of the
elements of f

kf , it would be possible to account for different hedges.  For instance, if there is a

line with a MW limit in either direction, the vector could include a flow in one direction and an
equivalent counterflow in the other direction.

Suppose we have a market equilibrium from the spot market, ( )* *, ,p y u .  If this also

satisfies the optimality conditions with Lagrange multipliers ( ),λ η , it follows by inspection of

these optimality conditions that ( )* * *, , , , fp y u fη , with * 0ff = , is also a solution for the

expanded market equilibrium problem that includes the transmission module:
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Hence, we have by simultaneous feasibility that

( )* .t t f t fp y p g fη≥ − +

In other words, we could have selected this set of flowgate rights in solving (21), but it would not
have been a better solution.  Therefore, the net revenue from the actual dispatch plus the payments
from the forward generation obligations is sufficient to cover the payments under FG-FTR
obligations.

The usual definition of FG-FTRs exploits the DC-Load model and does not consider the
forward obligations for generation to cover losses for the “no load” condition.  In the full AC case,
if there are no such obligations, then this is not quite a proof of pure revenue adequacy, but the
bound on the error is t fp g , which is likely to be small.  In the DC-Load case without losses, this
maximum error is zero, and the usual revenue adequacy condition follows from simultaneous
feasibility.

  Note that this does not require a more restrictive feasibility condition like:
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( )*, 0.f fK g u f− + ≤

Hence, the FG-FTRs obligations might not be feasible at no load under the current setting of the
controls at the market equilibrium, *u .  All that is required is simultaneous feasibility for some
available setting of the controls.  This would be especially important in the DC-Load model with
rapidly changing interface constraints intended to proxy for voltage and stability limits.

FG-FTR Auction
A natural formulation of an auction model for FG-FTR obligations is:
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(22)

This formulation suggests a difficulty for the FG-FTR formulation, at least in this general
case.  Part of the motivation for FG-FTRs is the possibility of constructing equivalent hedges to
PTP-FTRs through the trading of rights for individual constraints.  However, in principle this
suggests that the constraints be fully subscribed in the auction.  Furthermore, by allowing for the
flexibility to bid for individual constraints, the FG-FTR framework makes it more likely that all the
constraints will be binding.  If all the constraints in the auction of (22) are binding, then the model
has hundreds of thousands of variables and, more problematically, hundreds of thousands of active
constraints.  It is clear that the relaxation method described for the PTP-FTRs would not be
applicable in solving this problem, and some other approach would be required.

In the special case of the pure DC-Load model, with no variation in system settings, the
constraints could become completely separable and the forward losses are zero.  In this case, it
would be possible to have many of parallel auctions for individual flowgate rights.  However, this
characterization of FG-FTR auctions would ignore two critical points.  First, the separable auctions
would presumably foreclose the ability to get the right mix of flowgate rights.  On other words, the
generality above to allow f

kf to hedge more than one constraint would be lost.  Second, the pure

DC-Load model in (11) may not be a satisfactory representation of the system.  The more general
linear approximation in (12) may be required, but this reintroduces interaction among the
constraints through the controls in u or changes in the topology in A.  In either situation, the
computational challenge remains to be addressed.

The practical implication is that a successful auction, even of FG-FTR obligations only, may
require restrictions on the eligible constraints.  Thus would reappear the need for someone to specify



48

the "commercially significant" constraints.59  This would undermine the equivalence of the rights
and eliminate the possibility of a perfect hedge.  As a commercial matter, this may be acceptable, or
it may be a problematic limitation.  At a minimum, any FG-FTR implementation should not simply
assume that (22), although well-defined, is easy to solve.

FG Options

The obligation formulation of the FG-FTR provides for counterflow but raises the
possibility that payments will be negative.  Hence, FG-FTR options are of interest as a hedging
instrument.  At this abstract level, we define FG-FTR options as 0o

kf ≥ , with the financial

contract to pay the shadow price η  for the amount of the option.  Given the sign constraint, the

financial payment under the option is 0 0.t
kfη ≥

With this formulation, there is much less then meets the eye in the distinction between the
FG-FTR obligation and option.  The formulation of the dispatch model means that the shadow
prices are all nonnegative.  The ability to construct an FG-FTR that includes more than one
constraint, as opposed to defining an FG-FTR as for an individual constraint, puts all the
flexibility in the hands of the market participant.  If the market participant defines the FG-FTR
obligation with 0f

kf ≥ , this is equivalent to the FG-FTR option.  In this sense, it seems more

natural to simply define FG-FTRs as obligations and dispense with the alternative definition.

One reason for retaining the distinction may be to avoid confusing any market
participants who are not familiar with the conventions of constrained optimization formulations
that guarantee that the shadow prices are always positive.  But from a technical perspective, the
FG-FTR option could be considered a special case of an obligation, at the discretion of the
market participant in selecting the elements of f

kf .

In some cases the simple formulation of the FG-FTR obligation may not capture what is
intended by an option.  For example, consider the ubiquitous constraints of the form of (3) in the
AC model.  This single limit on the MVA apparent power flow is not quite the same thing as an

upper and lower limit on the directed MW flow.  Furthermore, the sign of ( )* *,y kK y u y∇  would

change depending on the direction of the flow.  Hence, the hedging value of the FG-FTR will
depend on the nature of the definition of the constraints.

Note that the obvious FG-FTR option for a balanced transaction ky  may not correspond

to a PTP-FTR option where o
k kyτ = .  In particular, consider the FG-FTR option that includes

only the constraints where the flow is in the same direction as the constraint, i.e.,

( )( )* *max 0, ,o
k y kf K y u y= ∇ , where the maximization is element by element.  If there are any

                                               
59 A limitation to such "commercially significant" constraints was prominent in early flowgate models, but
rejected later given the implications for either imperfect hedges or demands that only part of the congestion cost be
charged for "covered" physical schedules.
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binding constraints in the opposite direction, we may have payment under the PTP-FTR option

less than the payment under this FG-FTR option, or ( )max 0, t o t o
k kp fτ η< .60  For example, in the

DC-Load case with congestion only in the prices, if there is any counterflow induced on binding
constraints, with 0iη >  and 0i kH y < ,

( ) ( )max 0, max 0,t t o t
k k kHy f Hyη η η< = .

In other words, the payment under the PTP-FTR option would be strictly less than under
the FG-FTR option for the same point-to-point transaction ky  because there is no netting of

counterflow.  And in the same circumstances, the FG-FTR option could not provide an exact
hedge for the point-to-point schedule.

The revenue adequacy condition for simultaneously feasible FG-FTR options follows the
case for FG-FTR obligations.  The corresponding formulation for the auction that includes both
FG-FTR obligations and options is:
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The mathematical form of this FG-FTR auction with options is essential the same as with

obligations only.  The comments above apply as to the computational challenge in finding a solution
with a large number of binding constraints.

HYBRID SYSTEMS

The central role of a bid-based security-constrained economic dispatch with its market
clearing prices makes for a natural interest in hedging the price differences across locations.  The
desire for trading opportunities has been a motivation for capturing the rights on individual
constraints.  Rather than make a policy decision about the best form of transmission rights, a

                                               
60 This is a simple generalization of a result of Richard P. O'Neill, Udi Helman, Benjamin F. Hobbs, William
R. Stewart, and Michael H. Rothkopf,  "A Joint Energy and Transmission Rights Auction: Proposal and Properties,"
Federal Energy Regulatory Commission, Working Paper, February 2002, p. 6.  O'Neill et al. concludes that the FG-
FTR option dominates the PTP-FTR options, which must satisfy the same constraint in the auction.  However, this

dominance requires that ( )* *,yK y u∇ is known in advance, which is true under the pure DC-Load model but not

true in general.
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suggestion is to do everything and include both PTP-FTRs and FG-FTR in a comprehensive
model, and let the market decide. 61

The so-called hybrid model follows this logic to include all forms of FTRs.:

"The MISO Hybrid model is based on real-time Locational Marginal Pricing
(LMP) applied to a multi-control area environment and both point-to- point (PTP
rights) and flowgate (FGR rights) congestion hedges in the forward markets.
Point-to-point rights are supported in the MISO model in the form of options and
obligations. In addition to the Midwest ISO, other RTOs in the Eastern
Interconnection are also considering the Hybrid model as the basis for their
congestion management systems."62

This is an appealing approach if it is feasible.  In the various proposals for such hybrid
systems, a note of caution addresses this issue of the ability to implement such a hybrid.

"The allocation and auction of FGRs and PTPs will be subject to a simultaneous
feasibility test to ensure revenue adequacy.  The form and implementation of such
a test needs to be developed for a combined FGR and PTP system including
options as well as obligations." 63

Here we summarize the implications in terms of the definition of the rights and the form
of the auction.  This amounts to combining the four types of FTRs in a single auction with a
combined test of simultaneous feasibility and revenue adequacy.

Combined AC Model

The full AC formulation provides the most general case.  Hence, the hybrid model
includes point-to-point obligations and options, and flowgate obligations and options.
Following the formulations above, the combined "hybrid" auction model would be of the form:

                                               
61 Richard P. O'Neill, Udi Helman, Benjamin F. Hobbs, William R. Stewart, and Michael H. Rothkopf,  "A
Joint Energy and Transmission Rights Auction: Proposal and Properties," Federal Energy Regulatory Commission,
Working Paper, February 2002.
62 Midwest Independent System Operator, "MISO Long-Term Congestion Management Straw Proposal,"
October 8, 2001, p. 1.
63 Midwest Independent System Operator, "MISO Long-Term Congestion Management Straw Proposal,"
October 8, 2001, p. 21.
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Awards of mixtures of all four types of FTRs would then maximize the bid value while

maintaining simultaneous feasibility.  By the natural extension of the arguments above, the mix
of FTRs would be revenue adequate.  Hence, the mix of FTRs and the corresponding auction
would be well-defined and internally consistent.

A difficulty of the hybrid model is in solving the auction model.  As discussed above, in
the case of PTP-FTR obligations, the auction model is much like the AC security-constrained
economic dispatch.  Commercial software can be adapted to solving this problem through use of
the relaxation strategy, as demonstrated by the successful experience in New York.  Addition of
PTP-FTR options significantly complicates the auction model.  However, the point-to-point
formulation restricts the impacts on constraints to solutions that could correspond to an actual
power flow.  Therefore, it is plausible to conjecture, or at least hope, that the number of binding
constraints would still be a small subset of the hundreds of thousands of possible constraints in
the security-constrained formulation.  If true, then this would preserve the ability to use the
relaxation algorithm to solve the auction model for both types of point-to-point FTRs, although
this has not been tested.

Introduction of the flowgate FTRs fundamentally changes the nature of the auction
model, as seen from a computational perspective.  Flowgate bids need not correspond to actual
power flows, and the theory of the flowgate hedge suggests that all, or at least a very large
number, of constraints would be fully subscribed in the auction.  In principle, any constraint that
could be binding in some dispatch (which is the definition of a monitored constraint) would have
some positive expected value for its future shadow price.  Hence, any such constraint should
elicit a positive price in the auction.  But then all the constraints would be binding.  Further, the
constraints are not separable.  Hence, the full model would have to be solved but the critical
relaxation strategy for solving the auction model would not be available.

It is not clear, therefore, that this hybrid model could be solved in any practical
implementation for a real grid.  In any event, it would require some new approach different than
the algorithms used in commercial software.  Or the resolution might be to restrict the bids for
flowgate rights to a small number of flowgates, with the commercial impact of further reducing
the hedging value of the FG-FTRs.

Difficulty in solving the auction model is not a mere technicality.  For example, it would
not suffice to simply make an arbitrary but feasible distribution of the FG-FTRs.  As discussed at
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length in O'Neill et al.,64 the FTR approach exploits repeated application of the auction model to
reconfigure the rights in anticipation of the actual dispatch.  This is the so-called "multi-settlement"
system.  The final auction, which is the dispatch itself, reduces to the same form as with PTP-FTR
obligations, but day-ahead and other reconfiguration auctions running up to the dispatch would
include all forms of FTRs found in any hybrid model.  Only when rights other than PTP-FTRs
obligations were to be extinguished through settlement would the auction revert to the same form as
an economic dispatch.

This feature of FTRs may have been little noticed in the implementations with PTP-FTR
obligations.  By design, PTP-FTRs obligations reconfigure into other PTP-FTR obligations, right up
to and including the final dispatch.  There are multiple settlements, one for each auction, but it is
easy to roll over the rights.  For options or flowgate rights, however, at some stage we would go past
the last full reconfiguration auction that could maintain rights other than PTP-FTR obligations, and
this last auction is not the final dispatch.  Then all rights must be reconfigured into feasible PTP-
FTR obligations and settled at the prices in that last auction.

It is important, therefore, to decide on when the hybrid rights would be extinguished.  If the
full hybrid auction problem were difficult to solve, the hybrid model would be missing a critical
element.  Absent an easy way to solve the hybrid auction problem, delaying settlement would imply
that trading would be only in the secondary market and, thereby, recreate many of the problems of
physical rights.  And earlier settlement would further compromise the value of all rights other than
PTP-FTR obligations.

Combined DC Model

The simplified DC-Load formulation of the auction is of a similar form, but without the
complication of accounting for losses.  There need be no unbalanced obligations, but both types of
balanced point-to-point FTRs would be included.  The flowgate rights would appear in the same
way.  The resulting auction model would then be:
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As with the AC formulation awards of mixtures of all four types of FTRs would then

maximize the bid value while maintaining simultaneous feasibility.  The values for the FTRs
would be determined by congestion alone.  With the natural extension of the arguments above,
the mix of FTRs would be revenue adequate.  Hence, the mix of FTRs and the corresponding
auction would be well-defined and internally consistent.
                                               
64 Richard P. O'Neill, Udi Helman, Benjamin F. Hobbs, William R. Stewart, and Michael H. Rothkopf,  "A
Joint Energy and Transmission Rights Auction: Proposal and Properties," Federal Energy Regulatory Commission,
Working Paper, February 2002.
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Similar difficulties arise in solving the hybrid model, although it is substantially easier
than the AC case.   In the case of PTP-FTR obligations, the auction model is much like the DC-
Load security-constrained economic dispatch.  Commercial software for solving this problem
also use the relaxation strategy, as demonstrated by the successful experience in PJM.  Addition
of PTP-FTR options complicates the auction model and expands the computational requirements.
However, again the point-to-point formulation restricts the impacts on constraints to solutions
that could correspond to an actual power flow.  Therefore, it is plausible to conjecture that the
number of binding constraints would still be a small subset of the hundreds of thousands of
possible constraints in the security-constrained formulation.  If true, then this would preserve the
ability to use the relaxation algorithm to solve the auction model for both types of point-to-point
FTRs, although this has not been fully tested.

In essentially the same way as for the AC model, introduction of the flowgate FTRs
fundamentally changes the nature of the DC-Load auction model, as seen from a computational
perspective.  The flowgate bids need not correspond to actual power flows, and the theory of the
flowgate hedge suggests that all, or at least a very large number, of constraints would be fully
subscribed in the auction.  In principle, any constraint that could be binding in some dispatch
(which is the definition of a monitored constraint) would have some positive expected value for
its future shadow price.  Hence, any such constraint should elicit a positive price in the auction.
But then all the constraints would be binding.  Further, the constraints are not separable.  Hence,
the full model would have to be solved and the critical relaxation strategy for solving the auction
model would not be available.

It is not clear, therefore, that this hybrid DC-Load model could be solved in any practical
implementation for a real grid.  In any event, it would require some new approach different than
the algorithms used in commercial software.  Or as with the AC case the resolution might be to
restrict the bids for flowgate rights to a small number of flowgates, with the commercial impact
of further reducing the hedging value of the FG-FTRs. If the full hybrid auction problem were
difficult to solve, the hybrid model would be missing a critical element.

CONCLUSION

So-called physical transmission rights present so many complications for a restructured
electricity market that some other approach is required to provide property rights for the grid.
Under a standard market design built on a bid-based, security-constrained, economic dispatch
with locational prices, the natural approach is to define financial transmission rights that offer
payments based on prices in the actual dispatch.  Different models have been proposed for point-
to-point and flowgate rights, obligations and options.  With consistent definitions, the rights can
be shown to be simultaneously feasible and revenue adequate in various AC formulations or
approximations.  The conditions for simultaneous feasibility also define the form of auctions that
would award or reconfigure the rights.  In the case of point-to-point obligations, the practical
feasibility of the approach has been demonstrated with adaptations of commercial dispatch
software.  In the case of point-to-point options, the computational strategies could be extended
and might also work but have not yet been demonstrated.  In the case of flowgate rights in the
full definition, the computational approach available from dispatch software no longer applies
and something new would be required.  Or the flowgate implementation might require significant
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restrictions and simplifications that would compromise the theoretical value of flowgates as
hedges.  If all forms of rights are to be included in a hybrid model, the policy implication is to
start with point-to-point obligations as the first practical implementation.  Later evaluate the
introduction of options or flowgate rights once these have been demonstrated to be workable in a
real grid with complexity that does not appear in simplified examples.
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APPENDIX

Generic Transmission Line Representation

The generic transmission line analysis employs complex variables.  To avoid confusion
here, the indexes for the two terminals of the line are k and m.  For a development of the model
transmission line and transformer model, see Grainger and Stevenson.65  By choice of
parameters, this generic transmission line representation allows for a Π -equivalent
representation of a line with no transformer, an ideal transformer, or a combination of both.

Transmission  Line & Transformer

kV mV

kI mI

1: kmj
kmt e α

2
capY

2
capY

r x

Here we follow Weber's notation and conventions.66  This is useful in that Weber also provides a
extensive detail on the characterization of the Jacobian of the power flow equations to provide
                                               
65 John D. Grainger and William D. Stevenson, Jr., Power Systems Analysis, McGraw-Hill, 1994, pp. 361-
367.
66 James D. Weber, "Implementation of a Newton-Based Optimal Power Flow into a Power System
Simulation Environment," MS Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1997, p. 73-74.
(http://www.powerworld.com/DocumentLibrary.html )
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further insight into the implications of the AC power flow model, including calculation of the
derivatives with respect to the transformer parameters.  As shown in the figure let Vk represent
the complex voltage with magnitude kV  and angle kθ . The data include the line resistance (r),

reactance (x).  The transformer includes turns ratio (tkm) and angle change ( kmα ).  The line

charging capacitance is the complex Ycap.

The line admittance (y) is the inverse of the line impedance (z) formed from the
resistance and reactance.

( )
( )

*

* 2 2

1 1 1 1
.

r jx r jx r jx
y g jb

z r jx r jx r jx r jx r xr jx

+ − −= = = = = = +
+ + + − ++

With P as the real power and Q as the reactive power, the general rules for complex
power (S) have:

( ) ( )**2* * * .S P jQ VI zII z I P jQ V I= + = = = = − =

The line capacitance is represented here as:

0 .
2
cap

cap

Y
jB= +

Following Weber, for the generic representation in the figure, complex current ( kI ) from

k towards m satisfies:

.
2

kmj
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k k m
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Y e
I V y V y
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α− 
= + − 

 

Therefore, the complex power flow from k to m is:
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The complex current ( mI ) from m towards k is
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Hence,
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If the system is normal and the angle change is fixed, then the angle change can be
included in the line admittance. Similarly for normal systems, if the transformer tap setting is
fixed, the turns ratio can be included in the per unit normalization of the voltages, which would
produce appropriately modified values of y but with the elimination of the separate transformer
parameters (t,α ). 67  Ignoring the line capacitance, this simplified representation would be

( ) ( )( )
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and
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This is a familiar simplification often seen in the electrical engineering literature.
However, if the system is not normal, tap ratios are variable, or phase angle adjustments are
variable, it will be necessary to use the more general representation as shown above.

The notation translation to the discussion in the main text has:

, , , , , .k k i k ij k k km k kmG g b Z S t tδ θ α α= Ω = − = = = =

                                               
67 Normal is a term of art, not necessarily intended to mean "usual."  A system is normal if for each parallel
path the product of ideal transformer gain magnitudes is equal and the sum of ideal transformer phase shifts is the
same.  See Arthur R. Bergen and Vijay Vittal, Power Systems Analysis, 2nd Edition, 2000, Prentice Hall, p. 154-175.


