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Abstract

How often do multiple, independent parties discover the same vulner-
ability? There are ample models of vulnerability discovery, but little 
academic work on this issue of rediscovery. The immature state of this 
research and subsequent debate is a problem for the policy commu-
nity, where the government’s decision to disclose a given vulnerability 
hinges in part on that vulnerability’s likelihood of being rediscovered 
and used maliciously by another party.  Research into the behavior of 
malicious software markets and the efficacy of bug bounty programs 
would similarly benefit from an accurate baseline estimate for how 
often vulnerabilities are discovered by multiple independent parties. 

This paper presents a new dataset of more than 2,600 vulnerabilities, 
and estimates vulnerability rediscovery across different vendors and 
software types. It concludes that rediscovery happens more often than 
the 1% to 9% range previously reported. The aggregate rediscovery 
rate for our dataset is 12.7%, ranging between 10.8% for Chrome 
between 2009 and 2017, to 21.9% for Android between 2016 and 2017. 
For Android and Chrome, more than 60% of all rediscovery takes 
place in the first month after the original vulnerability’s disclosure. 

These results are largely in line with those of the original version of 
this paper published in July 2017, and indicate that the information 
security community should map the impact of rediscovery on the 
efficacy of bug bounty programs, and policymakers should more 
rigorously evaluate the costs and requirements for non-disclosure of 
software vulnerabilities.
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1.	 Introduction

Vulnerabilities are an important resource. Both intelligence and law 
enforcement activities increasingly emphasize the use of software vul-
nerabilities to gain access to targeted systems. These same software flaws 
are also a critical piece of defensive information, granting companies like 
Apple and open source projects like Apache insight into where there are 
holes in their software in need of repair. Left unfixed, software vulnerabil-
ities provide malicious parties a point of access into any computer system 
running the software. Programs to pay researchers and others who dis-
close vulnerabilities to software developers, so-called bug bounties, are an 
increasingly popular way for companies to discover flaws in their code.

Underlying the choices to pay for a software vulnerability, as well as gov-
ernment decisions to keep some a secret, are assumptions about how 
often those same software flaws could be discovered by someone else, a 
process called rediscovery. There is very little rigorous research into how 
often rediscovery takes place, and yet we know it happens, sometimes in 
high-profile ways. For example, the Heartbleed vulnerability in OpenSSL 
lay dormant for three years, and yet was discovered twice within just a few 
days, by Neel Mehta of Google and researchers at the Finnish information 
security firm Codenomicon.1 This rediscovery rate becomes particularly 
important if the software in question is a widely used open source project 
or a cryptographic library. 

This paper introduces the issue of vulnerability rediscovery, presents our 
research, and addresses some of the larger questions raised by this phe-
nomenon. A particularly challenging issue with rediscovery is that the rate 
changes over time and varies for different types of software. We collected 
data from multiple software vendors and an open source library to track 
vulnerability records and look for duplicates, where a single software flaw 
had been disclosed multiple times. We then used those duplicates to esti-
mate the rate at which vulnerabilities were discovered more than once by 
independent parties. We also used this data to track how the rediscovery 

1	 Posted on April Lee, “How Codenomicon Found The Heartbleed Bug Now Plaguing The Internet,” 
ReadWrite, April 13, 2014, http://readwrite.com/2014/04/13/heartbleed-security-codenomi-
con-discovery/.
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rate can grow over time and to measure rediscovery lag—the time between 
when a vulnerability is first disclosed and subsequent duplicate disclosures.

The paper begins with background information on vulnerabilities and their 
discovery, along with a review of relevant literature and previous work. 
This leads into a discussion of the data collected for this project and our 
methodology, including the challenges present in counting vulnerabilities 
and measuring rediscovery. Following this are several analyses of this data, 
considering variation such as the vendor in question and change over time, 
as well as other measures such as rediscovery over time and rediscovery 
lag. The final two sections discuss some of the paper’s limitations and then 
conclude by suggesting implications of this work for scholarly and policy 
communities. 

Summary of Changes

This paper is a partially revised version of a paper previously published 
by the Belfer Center Cyber Security Project.2 This paper integrates several 
points of feedback and includes a manually verified dataset. Changes from 
the original dataset have resulted in a 3% decrease in the rediscovery rates 
for both Chrome and Firefox, owing to newly accessible records in the 
bug tracking systems for both and the removal of automatically generated 
duplicates. This revised dataset yields total rediscovery rates of 10.8% for 
Chrome and 14% for Firefox. These are largely in line with our original 
findings and thus lead to the same conclusions. An explanation of the 
changes can be found below, while detailed additions have been inserted 
in the relevant sections throughout. In response to feedback on the orig-
inal version of this paper, we have revalidated the Firefox and Chrome 
data, removing any records incorrectly marked as duplicates according to 
our coding framework, which only counts duplicates where there are two 
different disclosers. We have also removed a section outlining a thought 
experiment on intelligence community vulnerabilities. 

With respect to the underlying data, we found no issues in our review of 
OpenSSL or Android, though we believe it to be more accurate to sample 

2	 Available on our GitHub. https://github.com/mase-gh/Vulnerability-Rediscovery/blob/master/
Vulnerability%20Rediscovery.pdf.
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only Critical, High, and Medium severity OpenSSL bugs. We did find 
errors in relying on duplicate labels from the Chromium database and, in 
expanding and revalidating the Firefox data, filtered out any records that 
are not from different disclosers and labeled as high or critical severity. 
We made a mistake in relying directly on metadata in the Chromium bug 
database that coded some bugs as duplicates. Many of these duplicates 
were automatically generated by Google’s software testing infrastructure, 
ClusterFuzz, or were multiple reports from the same person and thus not 
instances of rediscovery. Reviewing the Chromium database manually, 
we recoded the total population of vulnerabilities in the stable release of 
Chrome, its last and most widely available version, and counted duplicates 
only where there were two different parties involved. One of those par-
ties can be Google itself, whether that is a disclosure from security team 
member or a product of the ClusterFuzz testing infrastructure.3 More 
detail on these changes is available in Sections 3 and 6.

3	 Speaking with members of the Chrome security team as well as the originator of ClusterFuzz, there 
was a consensus that ClusterFuzz is intended to discover vulnerabilities prior to malicious actors. 
Fuzzing is part of the range of discovery methods used to secure Chrome and thus counts as a 
reasonable source of discovery. – Conversation with the Authors, 26JUL17 and over email 12 and 
15AUG17.
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2.	 Background

Software vulnerabilities are flaws or features in code that allow a third 
party to manipulate the computer running this software. The level of 
design security in major commercial software products varies widely, from 
the vulnerability-rich history of Adobe’s products to Apple’s comparatively 
locked-down iOS operating system. Design insecurity is generally the 
result of poorly secured software, insecure programming languages, the 
growing complexity of commercial code bases, and simple human error, 
among a host of other causes. For example, a program that expects to 
retrieve a simple image file but fails to check the supplied file type might 
return an executable software program instead. The procedure to retrieve 
an image is intentional, but failing to check the file type allows a third 
party to manipulate it. The Love Letter virus of 2000 relied on the fact that 
Windows 2000 and XP hid known file extensions when reading file names 
from right to left. The virus file (LOVE-LETTER-FOR-YOU.TXT.vbs) hid 
itself by putting the executable file extension (.vbs) outside of a benign one 
(.txt), so Windows would only show .txt and the user would be none the 
wiser.4 Vulnerabilities may also be introduced directly to hardware through 
compromises in chip design or manufacture somewhere along the supply 
chain.5

Not all vulnerabilities are created equal—some are easier to find than 
others and only a small number will provide access to the best-secured 
software. What this means is that not all groups looking for vulnerabil-
ities are necessarily looking for the same vulnerabilities. An intelligence 
organization is likely to have the engineering and mathematics capacity to 
take low-value or difficult-to-use vulnerabilities and combine them into 
a working exploit. Less capable groups may have to wait until they find a 
vulnerability that can immediately be used to gain access to a computer 
system to develop a useful exploit.

4	 Microsoft, “VBS.LOVELETTER Worm Virus” (Microsoft, January 29, 2007), http://support.micro-
soft.com/kb/282832.

5	 Georg T. Becker et al., “Stealthy Dopant-Level Hardware Trojans,” August 21, 2013, http://people.
umass.edu/gbecker/BeckerChes13.pdf; Bruce Schneier, “How to Design — And Defend Against — 
The Perfect Security Backdoor,” WIRED, October 16, 2013, https://www.wired.com/2013/10/how-
to-design-and-defend-against-the-perfect-backdoor/.
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The knowledge of a vulnerability’s existence is valuable information, with 
similar properties to the location of buried treasure on a map or a secret 
told to a friend. The bug hunter’s challenge is to choose who to whisper 
their secret to, along with proof-of-concept code that proves their secret 
is in fact true. This secret is a source of value and creates a dilemma: mali-
cious actors who wish to gain access to a vulnerability are almost always 
willing to pay more than the software’s original vendor—sometimes a great 
deal more.6 Because a vulnerability is something embedded in a piece of 
software, a person who independently discovers it has no guarantee of 
being the only one who knows about its existence. Every passing day brings 
a higher probability that someone else working to find vulnerabilities in the 
same piece of software will stumble upon the bug, leading to rediscovery. 
This leads to an economy of buying and selling vulnerability information 
among criminal groups, companies, and governments.7 

Value of Rediscovery

Vulnerabilities are information, which means there is no intrinsic reason 
they can’t be held by multiple parties at once. Economics calls this char-
acteristic being non-rivalrous. A rediscovered vulnerability may be the 
same as the original, or a closely related flaw deemed similar enough to be 
functionally identical. Rediscovery describes the likelihood that two inde-
pendent parties will discover the same flaw in a piece of software. This is 
slightly different from a bug collision, which is when a vulnerability that 
had previously only been known to a single party enters the public domain. 
Our discussion about the rate of rediscovery assumes that the two groups 
that find the same bug are independent of each other. 

6	 A. Algarni and Y. Malaiya, “Software Vulnerability Markets: Discoverers and Buyers,” International 
Journal of Computer, Information Science and Engineering 8, no. 3 (2014): 71–81.

7	 T. J. Holt, “Examining the Forces Shaping Cybercrime Markets Online,” Social Science Computer Re-
view 31, no. 2 (September 10, 2012): 165–77, doi:10.1177/0894439312452998; Kurt Thomas et al., 
“Framing Dependencies Introduced by Underground Commoditization,” 2015, http://damonmccoy.
com/papers/WEIS15.pdf; Herr and Ellis - Ch.7 “Disrupting Malware Markets” in Richard Harrison 
and Trey Herr, eds., Cyber Insecurity: Navigating the Perils of the Next Information Age (Lanham, 
MD: Rowman & Littlefield, 2016), https://books.google.com/books?id=NAp7DQAAQBAJ&source. 
For more on the policy debate around which vulnerabilities governments should disclose, see Ari 
Schwartz and Rob Knake, “Government’s Role in Vulnerability Disclosure” (Belfer Center, June 
2016), http://www.belfercenter.org/sites/default/files/legacy/files/vulnerability-disclosure-web-fi-
nal3.pdf; Fidler - Ch.17 “Government Acquisition and Use of Zero-Day Software Vulnerabilities” in 
Harrison and Herr, Cyber Insecurity.
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Rediscovery is an important issue for the cybersecurity community, per-
haps most prominently in the debate over how government should balance 
the choice to keep secret or disclose vulnerabilities to software developers. 
In the United States, the Vulnerabilities Equities Process (VEP) is the inter-
agency process intended to make decisions about the disclosure of software 
vulnerabilities known by U.S. government agencies and organizations.8 
The key choice for the VEP is whether to keep a vulnerability, or vulner-
abilities, secret or disclose these flaws to their developer, whereupon the 
government loses the opportunity to use the vulnerability (though the time 
it takes for a vulnerability to become useless after disclosure can vary dra-
matically).  Measuring the cost of disclosure versus non-disclosure involves 
a range of factors, but an important factor is the likelihood that a vulner-
ability, kept secret from a vendor and unpatched, might be rediscovered 
by another party and used against U.S. citizens.9 The answer is critical to 
determining the cost of non-disclosure of a vulnerability. If a vulnerability 
in the possession of the U.S. government is not likely to be discovered by 
another party, then the risk of keeping it a secret is lower than if the likeli-
hood of rediscovery is high.10

However, there is more value in the question of rediscovery than just the 
VEP. Rediscovery can impact how the software security industry thinks 
about bug bounty programs, which pay researchers in exchange for dis-
closure of a software flaw. In paying for a vulnerability, companies expect 
that it can be patched (fixed). As these patches accumulate and users 
apply them, one of two things should happen: either these companies 
slowly reduce the total number of flaws in their codebase, or they find 
and fix enough old bugs to keep pace with new ones created as software is 
updated over time. Understanding the speed of rediscovery helps inform 

8	 Schwartz and Knake, “Government’s Role in Vulnerability Disclosure”; Jason Healey, “The U.S. Gov-
ernment and Zero-Day Vulnerabilities: From Pre-Heartbleed to Shadow Brokers,” Columbia Journal 
of International Affairs, November 2016, 4, https://jia.sipa.columbia.edu/sites/default/files/attach-
ments/Healey%20VEP.pdf.

9	 Mailyn Fidler and Trey Herr, “PATCH: Debating Codification of the VEP,” Lawfare, May 17, 2017, 
https://www.lawfareblog.com/patch-debating-codification-vep.

10	 The ShadowBrokers leaks could provide some insight into how often rediscovery of NSA vulnerabil-
ities takes place. Out of five serious vulnerabilities included in the leak, only one had been previous-
ly discovered in use in the wild and patched (constituting rediscovery by another party against the 
NSA). This would produce a rediscovery rate of 20% but should be treated skeptically as there is 
no indication what proportion of the total NSA stock of vulnerabilities this leak constitutes or what 
the rate of this larger population might be. For more, see Rebekah Brown, “The Shadow Brokers 
Leaked Exploits Explained,” Rapid7 - Information Security, April 18, 2017, https://community.rapid7.
com/community/infosec/blog/2017/04/18/the-shadow-brokers-leaked-exploits-faq.
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companies, showing how quickly a disclosed but unpatched bug could be 
rediscovered by a malicious party and used to assault the company’s soft-
ware. This information should drive patch cycles to be more responsive 
to vulnerabilities with short rediscovery lag, while allowing more time for 
those where the lag is longer. With additional work, rediscovery may also 
contribute to more accurate estimates of the density of vulnerabilities in 
software. 

Academic research into the malware markets is also likely to benefit from 
better estimates of vulnerability rediscovery. Rediscovery impacts the lifes-
pan of a vulnerability; the likelihood of its being disclosed to or discovered 
by the vendor grows with every instance of rediscovery. Just as one can 
compare a supermarket’s need to renew its stock of bread versus that of 
salted herring, some vulnerabilities are more likely to “go stale” sooner, 
and thus be of little value.11 Estimating rediscovery can help shed light on 
which types of vulnerabilities are more likely to decay relative to others, 
based on the frequency with which they are discovered by multiple parties.  

Rediscovery and Previous Literature

Despite the importance of this issue, the academic record on rediscovery is 
relatively sparse.12 A 2005 paper by Andy Ozment applied software reliabil-
ity growth models to vulnerability discovery to gauge the total population 
of software vulnerabilities in the operating system BSD.13 This paper also 
addressed rediscovery, using a collection of vulnerability bulletins from 
Microsoft between 2002 and 2004 to catalogue when the company credited 
more than one disclosing party. Ozment found an average rediscovery rate 
of just under 8%, aggregated over different types of software, including 
operating systems, applications, and supporting libraries. 

11	 A vulnerability can rise in value if integrated with many others as part of an exploit kit, a mecha-
nism to deploy malicious software using dozens of vulnerabilities, or if few targets apply the patch 
that fixes the corresponding flaw. 

12	 There is an ample literature on vulnerability discovery that deals with an important but slightly 
different question from this paper’s focus on rediscovery. For a detailed literature review, see Fabio 
Massacci and Viet Hung Nguyen, “An Empirical Methodology to Evaluate Vulnerability Discovery 
Models,” IEEE Transactions on Software Engineering 40, no. 12 (2014): 1147–1162.

13	 Andy Ozment, “The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability 
Hunting,” 2005, http://www.infosecon.net/workshop/pdf/10.pdf.
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Writing in 2013, Finifter et al. looked at the relative cost efficiency of vul-
nerability reward programs against directly employing security personnel. 
Looking at Firefox and Chrome, they found that most vulnerabilities are 
reported from within firms, though by 2012 this trend had shifted for crit-
ical vulnerabilities in Chrome and more were reported from outside the 
company. In a small section looking at rediscovery, the group’s paper calcu-
lated a mean rediscovery rate for Chrome of 4.6% and provided anecdotal 
evidence of similar rates in Firefox.14 

A collaboration between the bug bounty company HackerOne and 
researchers at Harvard and MIT produced a system dynamics model of 
the vulnerability discovery and stockpiling process.15 As part of this work, 
the group presented results of a random discovery simulation at RSA that 
showed a 9% rediscovery rate for immature software and less than 1% for 
“hardened” or more mature codebases. Unfortunately, no formal paper 
describing the methodology and data employed in this study has yet been 
published. 

In each of these instances, the question of rediscovery was tangential to a 
different debate. Ozment’s work was a response to Eric Rescorla’s conten-
tion that the long-term utility of vulnerability discovery and patching was 
low.16 Finifter and his group were comparing the efficacy of bounties to that 
of hiring security talent as full-time employees, and the HackerOne esti-
mate of rediscovery came in the context of discussing the relative density 
of vulnerabilities in old vs. new software. In each of these, there was little 
actual data available to judge the rate of rediscovery and other potentially 
interesting characteristics. 

Most recently, a 2017 study from the RAND Corporation used a 
small private dataset to evaluate the nature and behavior of zero-day 

14	 Matthew Finifter, Devdatta Akhawe, and David Wagner, “An Empirical Study of Vulnerability 
Rewards Programs,” in USENIX Security, 2013, https://www.usenix.org/system/files/conference/
usenixsecurity13/sec13-paper_finifter.pdf.

15	 Katie Moussouris and Michael Siegel, “The Wolves of Vuln Street: The 1st Dynamic Systems Model 
of the 0day Market” (RSA, 2015), https://www.rsaconference.com/events/us15/agenda/ses-
sions/1749/the-wolves-of-vuln-street-the-1st-dynamic-systems.

16	 Eric Rescorla, “Is Finding Security Holes a Good Idea?,” IEEE Security and Privacy 3, no. 1 (January 
2005): 14–19.
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vulnerabilities—those used by attackers before the vendors learn about 
them.17 The study found that over the span of a year, on average only 5.76% 
of vulnerabilities were rediscovered in the public domain, while for 90 days 
or less the figure was less than 1%. This is lower than our findings which 
saw annualized rates of between 10.8% and 21.9%.18 While the two papers 
are scoped to different ends, much of the distinction is likely attributable 
to differences in data sources and methodology. For more on these differ-
ences, see Section 6. 

3.	 Methodology and Data

This paper addresses a gap in the literature by integrating vulnerabilities 
reported in several different codebases, including the browsers Firefox and 
Chrome, the open source project OpenSSL, and the Android operating 
system to generate estimates of vulnerability rediscovery and related mea-
sures such as rediscovery lag.19 The goal in selecting these codebases was 
to cover more than one software type, span multiple vendors, and have the 
best possible access to complete data.20 

Counting Duplicate Vulnerabilities

Measuring rediscovery is difficult because once the original vulnerability 
is disclosed and made public, there is little incentive for anyone to come 
forward and make a new disclosure about the same vulnerability, except 
where to do so might result in reputational rewards. The dataset collected 
here, and all those that look at disclosure records, don’t measure discovery 
directly. Instead, this data captures disclosure as a proxy for discovery. This 

17	 Lillian Ablon and Andy Bogart, “Zero Days, Thousands of Nights” (Santa Monica, CA: The RAND 
Corporation, 2017), https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/
RR1751/RAND_RR1751.pdf. 

18	 OpenSSL is the outlier, with 57 bugs and 2 duplicates, this library’s rediscovery rate is 3.4%. We 
explore possible explanations for its variance with the other three software in the following section.

19	 A codebase is the collection of code used to develop a piece of software, including both current and 
previous versions. 

20	 All the data we used is available in our GitHub repository (https://github.com/mase-gh/Vulnerabil-
ity-Rediscovery), and we continue to work to expand this dataset to include closed source software 
and other open source projects.
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limits the “rediscovery window” to capture rediscovery for each vulnera-
bility record to the period between an initial vulnerability disclosure and 
public notice of the bug’s existence.

Limiting our data to this rediscovery window has some benefit as well. 
Looking at rediscovery, there is a reasonable assumption that over a long 
enough period any vulnerability will be discovered multiple times. Because 
the window in which we can observe rediscovery is effectively limited 
to the period between initial disclosure and when a patch is made pub-
licly available, there is a natural time constraint. This is built on Ozment’s 
method of counting multiple credited discoverers, a record-keeping pro-
cess that would end with a patch being made available to the public. 

Within this rediscovery window, our method of tabulating the discovery of 
a rediscovered vulnerability looks for two criteria: are there multiple par-
ties given credit for independently disclosing the same vulnerability, and/
or has the bug been marked a duplicate and merged with another from 
a different discloser? For OpenSSL, we only observed instances of credit 
being given to multiple parties, as that database did not include duplicates 
or merge information. More detail on the specific method of counting 
duplicates for each piece of software can be found below.

To calculate rediscovery, we measure the total number of vulnerability 
records with duplicates as a proportion of all vulnerability records for a 
piece of software. In a given period, if there are ten different vulnerability 
records and one of those records has received duplicate disclosures, then 
only one vulnerability record has a duplicate. As a result, the rediscovery 
rate is 1 in 10, or 10%.21 In our estimates, we collect the total population of 
vulnerabilities and sample those of high or critical severity to measure this 
rediscovery rate. Some of those duplicate reports come from software ven-
dors. While rediscovery can’t take place between two discoveries from the 
same organization, the same vulnerability found within a vendor and then 
disclosed from external party would certainly count. 

21	 This 10% figure shows the proportion of vulnerabilities that are rediscovered and not the total 
number of duplicates. If that same vulnerability was rediscovered 10 more times, for a total of 20 
vulnerability disclosures, the rediscovery rate is unchanged in this methodology. This is not to say 
these additional duplicates aren’t of interest; we address their frequency and significance in Multi-
ple Rediscovery in Section 4 below.
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The other two measures presented in this paper, rediscovery over time 
and rediscovery lag, are derived from the same data. The likelihood of 
rediscovery appears to increase in the months after a vulnerability’s ini-
tial disclosure, eventually leveling off within a few months. Rediscovery 
over time measures this rate of change. Rediscovery lag measures the time 
between an original disclosure and any subsequent duplicate disclosures; 
e.g., the time between DisclosureOriginal and DisclosureDuplicateA is X and time 
between DisclosureDuplicateA and DisclosureDuplicateB is Y. Thus, the rediscovery 
lag for Duplicate A would be X while the lag for Duplicate B would be X+Y. 

Coding and Data Sources

In each source of data for vulnerability rediscovery, we used only vulner-
abilities of high or critical severity to improve the quality of our data and 
impact of our analysis. The exception for this is OpenSSL where we used all 
critical, high, and medium severity records (more on this below). Software 
bugs are generally given a severity score to help organize them and priori-
tize which need to be fixed first. The definitions of high and critical severity 
vary somewhat between organizations but generally settle on critical as 
including anything that allows the execution of arbitrary code, while high 
covers most instances where an attacker could manipulate software func-
tions or operate without restriction if local to the targeted computer. For 
example, Google defines severity as:

•	 Critical: “issues allow an attacker to run arbitrary code on the 
underlying platform with the user’s privileges in the normal course 
of browsing.”

•	 High: “...vulnerabilities allow an attacker to execute code in the 
context of, or otherwise impersonate other origins. Bugs which 
would normally be critical severity with unusual mitigating factors 
may be rated as high severity.”22

22	 The Chromium Projects, “Severity Guidelines for Security Issues,” For Developers, https://sites.
google.com/a/chromium.org/dev/developers/severity-guidelines.
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By constraining this dataset to high and critical vulnerabilities, the paper 
offers analyses based on the most impactful software flaws. This means that 
the dataset comprises only a subset of the total population of vulnerabilities 
but emphasizes those most critical to developers and policymakers. This 
has also generally improved the quality of data, as record keeping appears 
to be most detailed for these most important bugs. We intend to expand to 
medium- and low-severity bugs, and their equivalent naming conventions 
across different vendors, in future work. 

In collecting data for this project, we spoke with more than a dozen 
vendors and open source projects. Despite helpful conversations with 
security and privacy team members at Apple, Microsoft, Cisco, and several 
others—we were unable to obtain anonymized vulnerability disclosure 
records from any of the major software vendors. Google cooperated to pro-
vide access to an internal database of Android disclosures but was unable 
to share data from proprietary software like the Nest line. We selected 
OpenSSL as an example library but also considered OpenSSH and ntpd, 
both of which were left out of the analysis because of the limited vulnera-
bility record information available. As this work, and that of other groups 
continues, we hope access to these sources of vulnerability record informa-
tion will improve.

Data for the software used in this paper came from four sources that we 
integrated into a single dataset. There are numerous challenges in counting 
vulnerabilities, and the variable state of record keeping discovered across 
vendors and open source projects only underlines this. By limiting our 
collection to these high- and critical-severity vulnerabilities, the dataset is 
made less generalizable but more reliable. 

Chrome

The Chrome dataset has been revised from its original version.23 The Chro-
mium data was scraped from the Chromium bug tracker and manually 

23	 Original paper with this analysis available here: https://github.com/mase-gh/Vulnerability-Redis-
covery/blob/master/Vulnerability%20Rediscovery.pdf
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evaluated to identify duplicate disclosures. 24 Chromium is an open source 
software project whose code constitutes most of the Chrome browser; 
Google adds a few additional features, such as a PDF viewer, but there is 
substantial overlap, so we follow on other research and treat this as essen-
tially similar to Chrome.25 In our previous approach, we misunderstood 
the inconsistency of the metadata in this database, including how the label 
“duplicate” was attached to bug reports. In some cases, both duplicates 
were generated by Google’s testing infrastructure or were duplicates sub-
mitted by the same person and thus not an instance of rediscovery. In other 
instances, these duplicates matched our coding of a duplicate—different 
individuals disclosing the same bug. In Table 1, the Total Population value 
is the total count of vulnerabilities regardless of severity in the Chrome 
stable release channel between 2009 and 2017. The sample of this popu-
lation we used to measure rediscovery is indicated in the Vulnerabilities” 
column, with the total count of duplicates under Duplicates.

ClusterFuzz

Some of the duplicates in the Chromium database are automatically gen-
erated. With that in mind, we should explain ClusterFuzz. ClusterFuzz 
is the Google Chrome team’s ensemble fuzzer, a collection of programs 
(fuzzers) that throw junk data at a software program to cause it to crash. 
Those crashes, recorded as crash reports, are collected and evaluated to see 
if they represent a security vulnerability. What makes ClusterFuzz interest-
ing is that it can do much more than just generate these crash reports. The 
Chrome team also uses ClusterFuzz to assign the security severity rating 
for vulnerabilities, essentially the priority they should be dealt with accord-
ing to what impact they could have, including all bugs submitted from 
outside disclosers. Most importantly, ClusterFuzz can submit all the bugs 
it generates automatically to the Chromium database. There is a manual 
review of these but this is considered a rubber stamp on the process.26 

24	 The Chromium Projects, “Chromium Bug Tracker,” Bugs, current, https://bugs.chromium.org/p/
chromium/issues/list?can=1&q=label%3ASecurity_Severity&sort=security_severity&col-
spec=ID+Component+Summary+Security_Severity+Reward+Reporter+Status&x=m&y=release-
block&cells=ids.

25	 Others have previously made this same choice, including Finifter, Akhawe, and Wagner, “An Empiri-
cal Study of Vulnerability Rewards Programs.”

26	 Conversation between a member of the Chrome security team and the authors, 21JUL17
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Because ClusterFuzz can identify, assign severity, and automatically submit 
bugs to the Chromium database, there are duplicates in the Chromium 
database that were generated by ClusterFuzz. This is more common with 
Chrome’s developmental releases—those updated nightly or weekly and 
used primarily by the testing community. In parsing the Chromium data-
base, some of the vulnerabilities labeled as duplicates had been generated 
by the same source, and thus not good examples of rediscovery. However, 
many were discovered by different parties, including where ClusterFuzz 
was one of the parties. 

Many instances of rediscovery take place using similar or even the same 
tools and techniques. That the Chrome team used a common tool infra-
structure, not even necessarily the same fuzzer, is irrelevant from our 
standpoint. An open source tool, such as a fuzzer, can be used by different 
parties to find the same vulnerability. This is nevertheless considered an 
instance of rediscovery. Simply using a fuzzer doesn’t obviate the chance of 
rediscovery and, indeed, a tool being widely available makes it more likely 
to be included in the discovery infrastructure of malicious parties. This is 
exactly what rediscovery looks like—instances where the same potential 
vulnerability is discovered by two different parties. We count instances 
where ClusterFuzz and an external discloser discover the same vulnerabil-
ity because fuzzing is part of Google’s security infrastructure and Google is 
a valid party for rediscovery. We do not count instances where ClusterFuzz 
rediscovers the same vulnerability previously discovered by itself, as this 
does not meet the two independent actors criteria. 

Revising Chrome

As in our previous analysis, we limited our population of vulnerabilities 
only to high- and critical-severity bugs. In this revision we also constrained 
our population to only those bugs from Chrome builds in the Stable release 
channel. These are versions of Chrome that have the widest possible release 
and so are a) exposed to the most people for discovery, b) theoretically the 
most secure against discovery, having been pushed through three progres-
sively more public release channels, and c) should see the lowest rates of 
bug churn—where vulnerabilities are identified and patched in short peri-
ods of time. 
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Because the Chromium database duplicate labels were assigned according 
to a system different from our own, we went through every vulnerabil-
ity marked as a duplicate and validated it by hand before parsing the full 
database again (this parsing script is available on our GitHub page). Our 
revised coding framework specified that two disclosures could only be 
counted as rediscovery where they were submitted by different parties. 
We also stepped through each bug coded as a duplicate manually, which 
resulted in dropping additional bugs from our count of duplicates. For 
example, bug 95072 (CVE-2011-2877) is a vulnerability in how Chrome 
parses a text file form. It has multiple duplicates in the Chromium data-
base, all submitted from different disclosers. These two duplicates could 
be counted as valid rediscovery; however, the first, 96958, was diagnosed 
as being related to another piece of software unrelated to Chrome and 
the second, 99232, was submitted but couldn’t be reproduced. This is a 
conservative way to parse this data, so we may be unnecessarily rejecting 
legitimate duplicates by not manually checking through the stack traces for 
each bug report. 

This approach may also fail to capture legitimate duplicates without 
multiple disclosers. For example, bug 119281 (CVE-2011-3074) was 
first disclosed on 21MAR12 and then disclosed by a second party on 
28MAR12. This alone was rediscovery, but meanwhile, the original disclo-
sure was noticed by a member of the Chrome security team and identified 
in the original bug’s comment history on 4APR12 as a bug that had been 
discovered internally by Google as well.27 Without the second disclosure on 
28MAR12, this would have been dropped from the dataset. 

Below are several examples of what we counted as rediscovery:

•	 Bug 71788 (CVE-2011-1196) was independently discovered by 
Chrome community member SkyLined on 3FEB11 and David 
Westin of Microsoft on 14FEB11. 

•	 Bug 67303 (no CVE assigned) was independently discovered 
by David Warren of Software Engineering Institute/CERT 

27	 The Chromium Projects, “Chromium Bug Tracker,” Bugs, current,  https://bugs.chromium.org/p/
chromium/issues/detail?id=119281#c16.
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on 17DEC10 and Chrome community member SkyLined on 
27DEC10. 

•	 Bug 449739 (CVE-2015-1251) affects the SpeechRecognitionDis-
patcher and was discovered internally by Google on 17JAN15. It 
was then disclosed on 5FEB15 by the Zero Day Initiative (ZDI), via 
either by internal discovery or disclosure from a third party to ZDI.  

Each bug was disclosed by two different parties, had the original and/or the 
duplicate record labeled as high or critical severity, and was present in the 
Stable release channel for Chrome. This portion of the dataset comprises 
1,798 vulnerability records, of which there are 195 records with at least one 
duplicate.

Android 

The Android data we sourced was developed in collaboration with a 
member of the Google Product Security Response team. We were provided 
access to data from Google’s tracking systems for Android vulnerabilities: 
the public facing Issue Tracker as well as an internal-use-only platform. 
The internal platform used by Google employees tracks disclosures from 
within the company as well as some from outside, while the public site 
records disclosures from outside the company. This data provides a glimpse 
into rediscovery rates for Android over a 17-month time frame between 
July 2015 and November 2016. A member of Google’s Product Security 
Team downloaded bugs from both tracking systems, then correlated them 
to remove identical records that existed in both systems.28 This individual 
then added a CVE ID for all records, to replace the internal tracking IDs. 
Instances of rediscovery—duplicate disclosures—were coded when a vul-
nerability record in the public site was noted as a duplicate and linked to a 
report credited to a different researcher than the original. Duplicates were 
also coded if two bugs were merged together. The Android portion of the 
paper’s dataset comprises 352 vulnerability records, of which 77 records had 
at least 1 duplicate.

28	 This is possible because Google maintains both respective tracking systems’ vulnerability ID value 
for all records on both platforms.
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There is no indication  in the Android data of the sort of automatic gener-
ation of duplicate vulnerabilities that took place with Chrome. Several of 
the duplicates are associated with the so-called Stagefright Bug, originally 
disclosed at Black Hat in 2015. This bug allowed an attacker to hijack an 
Android device simply by sending a crafted media message to the phone 
with no user input required. Of the seven Stagefright bugs originally dis-
closed by Zimperium, only one is included in this dataset.29 30 Many of the 
related Stagefright bugs are not disrupted by the patch for this original bug, 
and several were rediscovered, and thus certainly constitute independent, 
critical-severity vulnerability rediscoveries. For example, CVE-2015-6600,31 
a vulnerability in the Stagefright library in Android, exploitable through a 
specially crafted media file, was rediscovered twice.32 

One critique of this data is that it does not correspond with the trans-
parency of the other data sources used for this paper—that complete 
transparency would require more than is hosted in our GitHub repository. 
With respect to data access, all the bugs used in our analysis are available 
on GitHub with CVE codes and their respective dates of discovery and, 
where applicable, rediscovery. While the same level of transparency as 
with the Chrome and Firefox data would be ideal, Google’s issue tracking 
and mitigation system is not structured the same way as Android’s. Some 
Android vulnerability disclosure records are only available through an 
employee-accessible internal database. Our access to this internal tracker 
was one step removed; this was deemed a reasonable condition of receiving 
access to this data. 

There are means to further verify some of these duplicates, including 
using Android security bulletins and individual researcher publications. 
One example is CVE-2015-6639, a vulnerability allowing attackers to run 
code in the Qualcomm Secure Execution Environment (QSEE). 2015-
6639 was initially discovered by Gal Beniamini, but also discovered within 

29	 CVE 2015s -1538, -1539, -3824, -3827, -3828, -3829 are not included; -3826 is present

30	 Zimperium, “Experts Found a Unicorn in the Heart of Android,” Zimperium Mobile Security Blog, 
July 27, 2015, https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/.

31	 National Institute of Standards and Technology, “National Vulnerabilities Database”, Vulnerabilities 
current, https://nvd.nist.gov/vuln/detail/CVE-2015-6600.

32	 Looking for bugs where others have already gone may not win you praise from Pastor Laphroaig 
but it doesn’t impact this analysis.
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Qualcomm and disclosed to Google directly.33 This duplicate disclosure 
was made public on the corresponding Android Security Bulletin. 34 Eval-
uating the credits on several Android patch announcements, unnamed 
credit was also given to members of various security teams, including Goo-
gle’s Project Zero. These individuals were likely often the source of some 
duplicates noted on the internal issue tracker.35

Firefox

The Firefox dataset was scraped from records in the Bugzilla bug tracker 
for Firefox and related software dependencies.36 From a total population of 
1,119 labeled bugs, we sampled only vulnerabilities labeled as high-priority 
or critical in the Severity field in Extended Service Release (ESR) advisories 
for Firefox between 2012 and 2016. This sample comprises 472 vulnerabil-
ity records and 66 records with duplicates. Firefox presented a challenge in 
how to create a working subset of only those vulnerabilities from the total 
pool of bug records. Firefox has nightly builds—new versions of the code-
bases with small changes or trial features—and many of the vulnerabilities 
discovered in Firefox are found there and fixed immediately. This dataset 
does not include these vulnerabilities, since they are never exposed to the 
public as part of an Extended Stable Release (ESR), and are thus unlikely 
to represent bugs that might be independently rediscovered. By counting 
only bugs from ESRs, we could obtain a subset of vulnerabilities that were 
exposed for discovery and exploitation by all users. In Bugzilla, each vul-
nerability record has a report page, with a Tracker subsection. For some 
vulnerabilities, that Tracker subsection contains a Duplicates field with a 
record of associated bug codes and their status. Those records with data in 
the Duplicates field were what was coded as duplicates. 

As with Android, nothing in our discussion with Firefox’s security team, 
or subsequent review, indicates concerns with the Bugzilla database such 

33	 Gal Beniamini, “QSEE Privilege Escalation Vulnerability and Exploit (CVE-2015-6639),” Bits, Please!, 
February 5, 2016, http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerabili-
ty.html.

34	 Android Open Source Project, “Nexus Security Bulletin – January 2016”, Security January, 2016, 
https://source.android.com/security/bulletin/2016-01-01.

35	 Android Open Source Project, “Nexus Security Bulletin – October 2015”, Security October, 2015, 
https://source.android.com/security/bulletin/2015-10-01.

36	 Mozilla, “Bugzilla,” Bugzilla@Mozilla, https://bugzilla.mozilla.org/buglist.cgi?quicksearch=ALL%20
kw:sec%20cf_status_firefox_esr31%3Afixed%2Cverified.



20 Taking Stock: Estimating Vulnerability Rediscovery

as those encountered for Chromium. This includes accounting for the 
behavior of Mozilla’s internal fuzzing infrastructure, FuzzManager. Unlike 
ClusterFuzz, FuzzManager does not automatically assign security rat-
ings and, importantly, does not automatically log reports into Bugzilla. 
In expanding the data to cover 2017, we have filtered any duplicates that 
do not meet the coding criteria of high or critical severity and different 
disclosers. This has changed the aggregate rediscovery rate from 17.1% to 
14%.  Looking through the dataset, we can quickly find several instances 
of high-security-impact vulnerabilities. One such was CVE-2014-1551, a 
high-severity bug that was discovered by three different people and could 
allow an attacker to execute arbitrary code through several different ver-
sions of Firefox and the Thunderbird mail application (which shares code 
with the browser). 

OpenSSL

Our working sample from OpenSSL comprises all vulnerability records 
of critical, high, or medium severity from 2014 to 2016 for the OpenSSL 
project.37 The start time for this window is the disclosure of the Heartbleed 
vulnerability. OpenSSL’s records on vulnerability disclosures are unreliable 
prior to Heartbleed. This is not a criticism of the project, an open source 
endeavor which supported as much as two thirds of all web traffic in 2014 
and operated on a shoestring budget until just a few years ago.38 OpenSSL 
did not fail to record bugs received or mitigated, but rather the disclosure 
records suffered from inconsistent record keeping of non-critical infor-
mation such as additional duplicate disclosures. This inconsistency is a 
common issue across vulnerability disclosure programs, and is particu-
larly challenging in the open source community. We made note of this in 
the original paper as a result of conversations with members of the open 
source projects like OpenSSL and OpenSSH. 

There is reason to expect inconsistent record keeping of duplicate disclo-
sures with the OpenSSL data, and in fact there is also evidence of it. The 

37	 OpenSSL, “OpenSSL Vulnerabilities,” News/Vulnerabilities, https://www.openssl.org/news/vulnera-
bilities.xml.

38	 Dan Goodin, “Critical Crypto Bug in OpenSSL Opens Two-Thirds of the Web to Eavesdropping,” Ars 
Technica, Aptil 2014, https://arstechnica.com/information-technology/2014/04/critical-crypto-
bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/.
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2014 Heartbleed bug was a canonical example of rediscovery—present in 
the OpenSSL code for years, then independently discovered by two parties, 
Neel Mehta and Finnish security company Codenomicon, within days of 
each other.39 Yet on OpenSSL’s vulnerability page, only Mehta is credited. 
We included OpenSSL in the paper with the aim of broadening the dataset 
beyond mainstream consumer software. This portion of the dataset com-
prises 57 vulnerability records of which 2 have duplicate disclosures.40 In 
OpenSSL, vulnerabilities are noted as a duplicate if they credit two separate 
disclosers for the bug. Records with an “and” between credited reporters 
are coded as a collaboration and thus are not duplicate disclosures. Records 
with an “&” between reporters are coded as independent discoveries and 
thus duplicates.

39	 Bruce Schneier, “Simultaneous Discovery of Vulnerabilities - Schneier on Security,” February 25, 
2016, https://www.schneier.com/blog/archives/2016/02/simultaneous_di.html.

40	 Underlining the record-keeping issue—neither of these disclosures includes the Heartbleed bug, 
which was discovered twice within the span of a few days and reported in April 2014.
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Table 1—Dataset Summary41

The above table summarizes the four sources for this paper’s dataset, cov-
ering more than 2,600 vulnerability records over nine years from four 
different software projects. 

•	 Source—the software these vulnerabilities come from, explained in 
detail above

•	 Date Range—the time range for the population of vulnerabilities 
and our sample

•	 Total Population—the total number of vulnerabilities of any sever-
ity level available for the specified release type (e.g., Stable release in 
Chrome) from each of the data sources for the specified date range

•	 Sample Vulnerabilities—our sample of high and critical vulnerabili-
ties, a subset of the total population of vulnerabilities for the source 
software

•	 Sample Duplicates—the number of vulnerability record from our 
sample which had duplicates; see above for more detailed explana-
tion of what constitutes a duplicate for each source

•	 Rediscovery Rate—the proportion of vulnerabilities from each 
source with at least one duplicate disclosure.

41	 * Because of our inability to directly access Google’s records for the total population of Android 
vulnerabilities, we use here the total number for Android reported to the National Vulnerability 
Database in the specified date range

Source Date Range
Total 

Population
Vulnerabilities Duplicates

Rediscovery 
Rate

Google—Chrome 2009–2017 2,323 1,798 195 10.8%

Google—Android 2015–2016   68241 352 77 21.9%

Mozilla—Firefox 2012–2016 1,119 472 66 14.0%

OpenSSL 2014–2016 85 57 2 3.5%

Total 2009–2016 4,209 2,679 340 12.7%
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4.	 Analysis

Our analysis covers vulnerabilities in a range of software types, including 
standalone applications like Chrome and Firefox, and the library OpenSSL. 
The first section of analysis takes all this software together, producing an 
aggregate measure of vulnerability rediscovery. Following this is an anal-
ysis of multiple rediscovery (where there are multiple duplicate bugs), 
evaluating trends in specific codebases, and then an analysis of rediscovery 
lag, the time between initial disclosure and the first duplicate report. The 
final subsection evaluates rediscovery over time. Each section draws from 
all or part of the dataset, with explanations for the use of subsets where 
appropriate.

Vulnerability Rediscovery in the Aggregate

Vulnerabilities in the nine-year span of this dataset see an aggregate 12.7% 
rate of rediscovery without regard for time or software. This is higher than 
previous open-source estimates, which ranged from 6.84% in early empir-
ical work to 9% in more recent simulations.42 Figure 1 below charts the 
annualized discovery rate over the entire dataset, which varies between 0% 
and 16.3%, depending on the year. The negligible rate of discovery in 2009 
may well be attributable to the relative immaturity and small size of the 
discovery community looking at Chrome; its initial release was in Septem-
ber 2008. It should be noted that in Figure 1 and all graphs following, 2017 
data is presented to capture as much of the behavior of interest as possible, 
but it is necessarily incomplete, given this paper’s date of publication.

42	 Ozment, “The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability Hunt-
ing”; Moussouris and Siegel, “The Wolves of Vuln Street.”
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Figure 1—Full Dataset: Aggregate Rediscovery Rate Over Time43

Some of this variability is driven by the different rediscovery rates of each 
codebase. Figure 2 breaks out each piece of software with its corresponding 
rediscovery rate per year.

Figure 2—Full Dataset: Rediscovery Rates by Software and Year44

The rates of rediscovery vary between software but also over time. From 
2010 on, the bottom end of the range of values for the three largest pro-
grams, Chrome, Firefox, and Android, is 4.4%, while the upper end is 
23.3%. This variation shows some of the importance of software type in 
determining rediscovery rates.

43	 Figure 1: Calculated with all the software in the dataset in aggregate, by taking total number of 
vulnerability records with duplicates and dividing that by the total number of vulnerability records 
in each year. 

44	 Figure 2: Calculated for each software individually, by the same duplicates over total process as 
Figure 1.
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Multiple Rediscovery

This section looks at the rate of rediscovery by codebase and the phenome-
non of multiple rediscovery, where more than two parties disclose the same 
vulnerability. While we are not able to control for each vendor characteris-
tic individually—for example, the difference between bug bounty payouts 
or secure coding practices—this section demonstrates that there are rela-
tively consistent trends in multiple rediscovery rates between the vendors 
in our sample. Across this paper’s entire dataset, where rediscovery did 
take place, one duplicate was the norm, though some vulnerabilities saw as 
many as four, five, and even one case of 11 duplicate disclosures. Figures 3, 
4, and 5 describe this multiple rediscovery, putting it in context across Fire-
fox, Chrome, and Android. Each pie chart has three values:

•	 No Duplicates: vulnerabilities for which there was only a single 
disclosure

•	 One Duplicate: vulnerabilities with an initial disclosure and one 
duplicate

•	 Two or More Duplicates: vulnerabilities with an initial disclosure 
and more than one duplicate. Note that this counts all vulnerabil-
ity records with more than one duplicate, not the total of all these 
duplicates together.

We break the three biggest codebases out below, to show trends and differ-
ences in rediscovery, including distinctions between vulnerabilities with 
one duplicwate and those with two or more. 
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Figure 3—Chrome Vulnerability Rediscovery45 

Figure 4—Firefox Vulnerability Rediscovery

45	 Figures 3/4/5: Calculated by taking all solo duplicates (all records with duplicates—those with mul-
tiple duplicates) and the multiple duplicates (any record with multiple duplicates) as a proportion 
of total vulnerabilities with no duplicates (total vulnerability record—duplicates).
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Figure 5—Android Vulnerability Rediscovery 

Multiple rediscovery increases for all three in line with overall rediscovery 
rates, which should be expected if vulnerability rediscovery is driven by 
largely the same factors as the initial vulnerability discovery. This correla-
tion between rediscovery and multiple rediscovery may also be because 
newly rediscovered vulnerabilities are comparatively shallow (easier to 
find), and thus more likely to be disclosed by multiple parties. The ratio of 
multiple discovery varies somewhat; while about 20% of Chrome vulner-
abilities with duplicates are rediscovered multiple times, both Firefox and 
Android hover around 30%. Some of this may be attributable to differ-
ences in the composition of the discovery communities between the three, 
although it is interesting to see the distinction between the two browsers.

Vulnerability Rediscovery Lag

Rediscovery can be a useful metric, but we should also consider the ele-
ment of time and its impact on subsequent additional discoveries of the 
same vulnerability. This section looks at the time between original and 
duplicate disclosure: the rediscovery lag. This section uses the Chrome and 
Android data both to highlight differences between software types and to 
make use of software which, while open source, is primarily engineered 
and distributed by the same vendor. Rediscovery lag is calculated by taking 
the absolute time difference between original vulnerability disclosure and 
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first disclosure.46 This section presents the Android data sorted into dis-
crete monthly categories, as they were generated and shared with us. For 
Android, the average time between initial discovery and rediscovery was 
just under 1.5 months. Figure 6 shows a distribution of Android rediscov-
ery lag for all duplicates, covering 77 distinct vulnerabilities.  

Figure 6—Android Rediscovery Lag47

The disclosure of most duplicate vulnerabilities in Android takes place 
months later than the original, while only 20 occur in the same month. 
This challenges the notion of rediscovery as being largely simultaneous dis-
covery, and suggests instead a more independent activity. 

Figure 7 shows the time from original to first rediscovery for a subset of 
the vulnerabilities in Chrome. In Chrome, the largest portion of rediscov-
ered vulnerabilities are disclosed in the first week. The chart shows how the 
proportion of duplicates disclosed decreases over time, with only 10 out of 
a total of 195 disclosed more than six months after the original disclosure. 

46	 In a previous version of this paper we included lag for multiple disclosures where records contained 
them. To simplify the presentation and allow these charts to be compared directly to those that 
follow, displaying rediscovery rates over time, we have limited these to only the lag between original 
and first duplicate disclosure. 

47	 Figures 6 and 7: Calculated by taking each vulnerability record and counting the days between the 
original disclosure and first duplicate disclosure. These durations are then displayed as a histogram 
with varying bin lengths showing the distribution of rediscovery lag (time between original and first 
duplicate disclosure). 
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There is more transparency in the Chrome issue tracking process with-
out the internal Google issue tracker as for Android. This might increase 
awareness of other potentially similar bugs, driving duplicate disclosure 
close to originals. 

Figure 7—Chrome Rediscovery Lag

One factor that could help explain these differences in rediscovery rate 
between software packages is the length of time between the initial vul-
nerability report and when a patch was issued. This patch window is the 
capture period for our data so a smaller window could bias results lower, 
while a longer window could bias results higher. While this paper doesn’t 
evaluate causes for rediscovery rates, this influence of varying patch 
window length is an issue ripe for further work

Rediscovery Over Time

While the rediscovery lag can give some picture of how long it takes to find 
a vulnerability, another way to consider the problem of what proportion 
are likely to be rediscovered within a given period of time. For Android, 
that rediscovery is slower to increase but ends up higher, topping out at 
21.6% by six months from the original disclosure, as seen in Figure 8. 
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Within the first month after the original disclosure, more than 60% of vul-
nerabilities that will be rediscovered have been disclosed.48 

Figure 8—Android Rediscovery Rate Over Time

Chrome is available with more granular date information. Figure 9 
represents each day of the first week and the following three weeks as indi-
vidual points on the x-axis before aggregating by month. As with Android, 
more than 60% of rediscovered vulnerabilities are disclosed within a 
month of the original bug report.49

Figure 9—Chrome Rediscovery Rate Over Time

48	 This compares the aggregate rediscovery rate at one month (13.9%) to the aggregate one year 
Android rediscovery rate (21.9%). Within one month, 64% of rediscovery has taken place.

49	 This compares the aggregate rediscovery rate at one month (6.9%) to the aggregate one year 
Chrome rediscovery rate (10.2%), yielding 68% of rediscovery.
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5.	 Limitations of the Dataset

This research has to contend with several limitations. First, vulnerabilities 
are variably difficult to discover and exploit, which may influence discovery 
behavior and undermine the feasibility of aggregating them. Second, we 
only consider vulnerabilities with high or critical severity, which limits the 
generalizability of our results. There are additional factors over which we 
had no control that influence our result. 

Failure to Report

The ability to count duplicate reports of a single vulnerability assumes 
people will continue to disclose their discoveries. This may be the case 
before the original vulnerability is made public, but will likely drop sharply 
afterward. This is generally because once a patch is available (even if not 
yet broadly applied), additional disclosures add little marginal value. For 
individuals with an interest in disclosure, the time to observe duplicates is 
during this rediscovery window—between the original vulnerability’s dis-
closure and the developer making a patch available. Comparatively longer 
patch windows for some codebases could increase that time to capture 
duplicates, increasing the total number observed and skewing the rediscov-
ery rate for that software. 

Conversely, short rediscovery windows censor data that might otherwise 
be valid. One person affiliated with OpenSSL suggested that for open 
source projects, this patch window could be as short as seven days, leaving 
little chance for multiple parties to disclose.50 The length of this rediscovery 
window is unlikely to impact criminal groups and others with much less 
interest in disclosing vulnerabilities. This leads to higher rates of redis-
covery than are observed from only tracking disclosures. The format of 
disclosure behavior can also impact results; for example, differences may 
emerge between independent disclosure, bounty programs, and time-de-
pendent events such as competitions and private bounty events. Discovery 
from an internal team may follow a different pattern altogether, as 

50	 Communication with the authors, 18OCT16.
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recording a vulnerability allows employees to note the existence of the bug 
and pass it off to someone else. 

Many of the same caveats that apply to Ozment’s original analysis of 
Microsoft’s vulnerability bulletins remain an issue here, “...the multiple 
individuals/organizations credited may have collaborated on finding the 
vulnerability, rather than identifying it independently. Furthermore, the...
window of time for recording independent rediscoveries is [short].”51 The 
dataset collected for this paper attempts to account for some of these con-
cerns but is likely to lead to underestimates regardless. 

Failure to Record

Vulnerabilities are also patched by internal quality assurance and security 
teams before they ever reach public versions of software. Individuals affil-
iated with companies such as Cisco and Apple, as well as ones associated 
with open source projects like OpenSSL, suggested that these internal fixes 
might go unrecorded. Where the public does find, and disclose, a vulnera-
bility that has also been discovered internally, many groups are unlikely to 
record the subsequent disclosure as a duplicate. This failure to record vul-
nerabilities isn’t limited to internal discovery. Groups sometimes differ on 
which bugs constitute vulnerabilities or fail to record additional disclosure 
after the original. OpenSSL provides a good case in point; we know from 
press reporting that two separate groups discovered the Heartbleed bug in 
April 2014, within days of each other, but only one group is credited for the 
disclosure in the OpenSSL records. There are likely to be additional cases 
of this sort this across vendors and open source projects.  

There are also differences in the rediscovery rates of vulnerabilities at 
different severity levels, with some evidence that lower-severity flaws are 
rediscovered more often. Bugcrowd, a firm that helps integrate companies 
with a labor market for vulnerability discovery, found that rediscovery 
happened least often with their highest-severity bugs, 16.9% of the time. 
For second- and third-tier vulnerabilities (based on a five-tier system), 
the rediscovery rate jumped to 28.1% and 25.8%, respectively.52 This sug-

51	 Ozment, “The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability Hunting.”

52	 These figures were provided by Bugcrowd as an analysis of its internal reporting data, which inte-
grates participants from both its public and private programs.
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gests that rediscovery is more likely with less severe bugs—but this paper 
and the associated dataset are focused on the rediscovery rate and result-
ing policy implications from high- and critical-severity vulnerabilities. 
This is largely because of the potential consequences these vulnerabili-
ties could have if used against computing systems and the Internet more 
broadly. The difference, at least in a narrow sample, between critical- and 
medium-severity vulnerability rediscovery rates does suggest that the esti-
mates generated in this paper are lower than for the larger population of 
vulnerabilities.

Some factors contribute to over- rather than under-estimation. With bug 
bounty programs, disclosers will sometimes attempt to game the system by 
creating multiple aliases and submitting the same vulnerability repeatedly. 
In addition, at least one company’s public bug-tracking system aggre-
gated duplicates by linking separate vulnerability records and manually 
integrating them. This requires an analyst to discern the duplication and 
purposefully account for it. The degree to which bugs are duplicative can 
vary with individual judgment. Thus, our estimate of vulnerability records 
with two or more duplicates may be high.

The results of this analysis are significant as a baseline estimate representa-
tive of high- and critical-severity vulnerabilities. That the rediscovery rate 
for a broader set of software vulnerabilities may be higher only reinforces 
the utility of having a starting point to work from. The policy community 
doesn’t address the issue of rediscovery in any way informed by empirics, 
and the scope of this dataset is far larger and more diverse than previous 
work. In addition, because of the emphasis on high- and critical-sever-
ity vulnerabilities, this paper prioritizes analysis of those bugs of greatest 
interest to the information security community. 

Severity and Exploitability

Some of the bugs in this database, and thus a portion of our dataset of 
rediscoveries, may not be immediately exploitable by an individual. The 
paper doesn’t assume anything about the individual discovering these 
vulnerabilities, including their skills or resources available to them to dis-
cover or operationalize any of these vulnerabilities. Indeed, one of the key 
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differentiators between this work and the RAND study as discussed in Sec-
tion 6 is that the parties in our rediscovery could be any group rather than 
specifying a particular public/private combination. 

This paper also uses the severity scores assigned to bugs by their respective 
databases, including Chromium, even though these may be inconsistent 
because of the behavior of ClusterFuzz and the degree of subjectivity in 
assigning severity of a bug. There are issues with the potential exploitability 
or severity of vulnerabilities in the Chromium dataset, but these are largely 
subjective judgments and people will continue to disagree with the original 
Chromium coding. To remove any bias on our end, we used the security 
severity ratings of the Chromium database, limiting the analysis only to 
high- and critical-severity vulnerabilities. While these may not all be easily 
exploitable, they all represent security holes in the browser. 

Independence

It is not clear to what extent our bugs (or any in open source code) are 
truly independently discovered. There is a panoply of means by which vul-
nerability discovery could be made known to the world, from Twitter to 
new Metasploit modules to tracking disclosure credits. Following research-
ers like Tavis Ormandy and Natalie Silvanovich for several months prior to 
this publication, most observers would conclude there are vulnerabilities 
to be found in the Malware Protection Engine, and it could be a fruitful 
place to look for more. Disclosures stemming from this pattern of work 
by Ormandy and Silvanovich would thus not be strictly independent..53 
Managing this independence is an area of ongoing research but remains 
unresolved. 

53	 Iain Thompson, “‘Crazy Bad’ Bug in Microsoft’s Windows Malware Scanner Can Be Used to Install 
Malware,” The Register, May 9, 2017, https://www.theregister.co.uk/2017/05/09/microsoft_win-
dows_defender_security_hole/.
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Bounty Data

The data included in this research is not limited to vulnerabilities sourced 
from bounty programs. However, all the major vendors have bounties avail-
able for their software, though the reward structure and coverage varies 
over time and between programs. It is likely that the incentives offered by 
bounties bring more individuals into the pool to discover vulnerabilities 
in the corresponding codebase and changes the incentive to disclose. The 
same is almost certainly true of companies like Zerodium, which advertise 
multi-million dollar bounties for vulnerabilities in critical software like 
Apple’s iOS.54 The problem bounties, whether from vendors like Google or 
brokers like Zerodium, is that it remains unclear what systematic effect they 
have on disclosure behavior. There must be some effect, but absent a gen-
eralizable measure of how these bounties change discovery and disclosure 
incentives, no one can do more than acknowledge they are a factor. 

6.	 Implications

This section deals with implications of this research and addresses the 
results of a similar and more recent study. There are three areas impacted 
by the findings from this study: how companies handle bug bounties, aca-
demic research into the malware markets, and government’s disclosure of 
software vulnerabilities. 

Patching from Bug Bounties

Bug bounties drive vulnerability disclosure to firms, and are a major way 
for companies to identify bugs to be patched. The volume of these bugs 
can be overwhelming, leading to prioritization of some patches to be 
completed more rapidly than others. Rediscovery rates can help drive that 
prioritization, pushing bugs with a higher rate of rediscovery toward the 
top of the patching queue. If two bugs of equal severity come from software 
with different rediscovery rates, the one more likely to be found multiple 

54	 Andy Greenberg, “Hackers Claim Million-Dollar Bounty for iOS Zero Day Attack,” WIRED, November 
2, 2015, http://www.wired.com/2015/11/hackers-claim-million-dollar-bounty-for-ios-attack/.
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times should be patched first. This sort of awareness of how rediscovery 
patterns might inform new threats could bring useful new information 
to patch prioritization. This rediscovery information can also be useful to 
identify bugs that are more likely to appear many times in a bounty. Redis-
covery rates of 10.8% to 21.9% in this paper can help set the parameters for 
what companies running bounty programs could expect—establishing a 
potential upper bound for vulnerabilities, especially those in open source 
software. 

Studying the Malware Markets

Looking at the malware markets, rediscovery rates can help estimate prod-
uct life cycles in malicious software. Higher rates of rediscovery will drive 
greater churn as exploit kits and other products dependent on vulnerabil-
ities need to be refreshed more rapidly. At the rates of rediscovery found 
for this paper, nearly a fifth of all vulnerabilities may become known to a 
vendor or competitor in these markets every year. This discovery by other 
parties depresses the value of a vulnerability. These rates may also help 
inform a value curve for software vulnerabilities; as rediscovery rates go up, 
the period of high value shortens and absolute value may increase, owing 
to scarcity in these flaws. 

The Vulnerability Equities Process

The VEP presents a trade-off between public security realized through 
updated and well-maintained software and that obtained by vigorous intel-
ligence and law enforcement activity. In deciding to disclose a vulnerability, 
the government must weigh the relative costs of using a vulnerability and 
not disclosing it against turning that vulnerability over to a vendor so that 
it may be patched. If a vulnerability in the possession of the U.S. govern-
ment is independently rediscovered by another party, the risk associated 
with keeping it secret is much higher than if it is never rediscovered.55 This 
rediscovery rate becomes particularly important if the software in question 

55	 Assessing the entire chain of decision making in the mind of a notional attacker is impractical. 
Rediscovery is a critical point in the event chain. Without knowledge of a vulnerability, none of 
the other points about a potential attacker—motivation, skill, preferences—are relevant. In this 
scenario, a U.S. government agency is aware of the vulnerability and potentially has it in active use, 
leading to a decision not to disclose the information to the affected software’s vendor. While in use, 
this vulnerability is then discovered by a malicious party. This rediscovery means the vulnerability 
information is in several people’s hands and no longer exclusive to the U.S.
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is a widely used open source project or a cryptographic library. Here, the 
ripple effects of non-disclosure could impact a far larger number of people. 

What do the rediscovery rates from this paper tell us about the VEP? There 
is little systematic transparency into the types or number of vulnerabilities 
held by the U.S. government. It would be helpful if we could start to narrow 
down what might make intelligence community vulnerabilities distinct 
from all others, perhaps by some combination of measures for depth in 
codebase, discoverability, exploitability, and usefulness once exploited. The 
evaluation of what makes a vulnerability worthy of intelligence commu-
nity interest appears to be a mix of opinion and anecdotal evidence. This 
is insufficiently systematic to make strong claims about the population of 
intelligence community vulnerabilities.

What it means for this paper is that we cannot make a strong claim about 
what effect our rates of rediscovery might have with respect an intelligence 
agency’s stock of vulnerabilities. Throughout this paper, we have been care-
ful to clarify that our findings applied to the data available to our analysis 
and shouldn’t be taken to apply to all bugs across time. In a previous ver-
sion of this paper, as a thought experiment to demonstrate the significance 
of a few percentage points difference in rediscovery rate, we applied our 
numbers to an estimate of the total NSA stock of vulnerabilities generated 
last year by a group of researchers at Columbia University. 56 

The challenge with this discussing vulnerabilities retained by the U.S. 
government that no research available in the public domain has yet 
demonstrated systematically what the character and distinctive nature of 
government held vulnerabilities might be. Thus, any approximation can 
only be an educated guess. While there are critical security issues among 
the vulnerabilities contained in this database, including exactly the sort 
of sandbox escapes and memory corruption errors that one presumes an 
intelligence agency might be interested in, we can not be certain. 

What we can say is that our rediscovery rate data indicates vulnerabilities 
are found more often than previously thought, between 10.8% and 21.9% 

56	 Healey, “The U.S. Government and Zero-Day Vulnerabilities: From Pre-Heartbleed to Shadow Bro-
kers.”
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of the time within a year. Rediscovery captures only part of the popula-
tion of vulnerabilities held secret by the U.S. government but released into 
the wild with little to no warning. There is also proliferation of these tools 
through theft; take as example the Shadow Brokers release of the Equation 
Group tools and continuing disclosure of NSA vulnerabilities, including 
the one that made the WannaCry worm possible. 57 These findings, together 
with legitimate concerns over the management of risk associated with U.S. 
cybersecurity capabilities, should drive policymakers to reevaluate the 
current standards for government disclosure of software vulnerabilities. 
These findings should also motivate critical discussion and support for new 
research, preferably unclassified, about how these rediscovery rates differ 
for high-consequence software such as common cryptographic libraries or 
frequently used embedded systems software components.

Analysis in the Context of Recent Work

The RAND Corporation published a study on zero-day vulnerabilities a 
few days after this paper began circulating for comment. Though dealing 
with a larger range of issues in the development and use of vulnerabil-
ities, the RAND study also addressed bug collisions, a topic similar to 
vulnerability rediscovery, which has led many to compare results from the 
two papers.58 This paper finds that 10.8% to 21.9% of vulnerabilities are 
rediscovered within a year, but the RAND study finds the rate to be 5.8%. 
Though the two papers are asking slightly different questions, as explained 
below, we disagree with their conclusion that the rediscovery rate is as 
low as 6% over a year and especially that it remains below 1% within 90 
days of initial discovery. Figure 10 shows our data on the rediscovery rate 
over time for both Android and Chrome, overlaid on each other. Much of 
Chrome’s rediscovery takes place before the end of the first month, rising 
slowly to 9.5% at three months. Android spikes rapidly from 5.7% in less 
than a month, through 13.9% at one month, to 20.2% at three months. 

57	 Bruce Schneier, “Major NSA/Equation Group Leak - Schneier on Security,” Schneier on Secu-
rity, August 16, 2016, https://www.schneier.com/blog/archives/2016/08/major_nsaequati.
html.3,23]]}}}],”schema”:”https://github.com/citation-style-language/schema/raw/master/
csl-citation.json”} ; For more on intentional vs. unintentional proliferation, see Trey Herr, “Governing 
Proliferation in Cybersecurity,” Global Summitry 2, no. 1 (July 2017).

58	 Snowden, Edward. Twitter post. March 11th, 2017. https://twitter.com/Snowden/sta-
tus/840602409734922241 & Kim Zetter, “Malware Attacks Used by the U.S. Government Retain 
Potency for Many Years, New Evidence Indicates,” The Intercept, March 10, 2017, https://theinter-
cept.com/2017/03/10/government-zero-days-7-years/.

https://twitter.com/Snowden/status/840602409734922241
https://twitter.com/Snowden/status/840602409734922241
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Both rates are substantially higher than the 90-day rate from the RAND 
study. While some of this difference can be accounted for by the different 
sources of data and the two studies posing somewhat different questions, 
the gap remains striking.

Figure 10—Android and Chrome Rediscovery Rates over Time

The discrepancy between these two studies largely stems from differences 
in their questions and methodology. The RAND team worked with a vul-
nerability research group to construct a sample matching what might be 
found in the intelligence or military community. From their study: “We 
believe these data are relatively representative of what a sophisticated 
nation-state might have in its arsenal...applying wide generalizations to 
other datasets may be misleading, as generalizations to other data can 
only be drawn if the data are similar in nature to ours.” 59 This issue in 
data source is not an inconsiderable one; vulnerabilities discovered and 
reported directly to a vendor (whether through a bounty or not) will cover 
a wider array of bug types and severity than those selected strictly for oper-
ational use. It’s not clear to what extent this overlap is addressed by our 
sample being constrained to high- and critical-severity vulnerabilities. 

There are other differences, rooted in the data used by each study. RAND’s 
total dataset constitutes 207 vulnerabilities spanning 14 years, and accurate 
information on dates such as vulnerability birth and maturity were only 
available for 61% of these bugs, thus potentially reducing the useful dataset 
size for this rediscovery question to approximately 127 vulnerabilities, or 

59	 Ablon and Bogart, “Zero Days, Thousands of Nights,” 61.
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9 per year.60  Our study examined 2,6709 vulnerabilities, spanning 9 years, 
from open source software, including Chrome and the Android operating 
system. Every vulnerability record used in our analysis, with a minimum of 
their corresponding CVE or bug number, severity score, and dates for dis-
closure and duplicates, are available in a GitHub repository, along with all 
the scripts used to extract, clean, and organize this data.61 While the RAND 
dataset hasn’t been made public, summary statistics from the paper indi-
cate approximately 60% of the vulnerabilities affect closed source systems, 
predominantly Microsoft products, while another 35% are open source, 
and 5% of undeclared origin.62 

One of the key dimensions of the vulnerability disclosure debate is the fre-
quency with which a flaw held secret by the U.S. government will be discovered 
by another party; both studies address this issue but each does so through a 
different question. This paper looks at independent rediscovery of vulnerabil-
ities: instances where two independent parties disclose the same vulnerability 
to a vendor. This data represents high and critical vulnerabilities and measures 
the instance of independent discovery of the same bug between two parties, 
without characterizing the skill or resources of the discovering party.

RAND looked at the frequency with which vulnerabilities in the public 
domain collided with previously known vulnerabilities in a private dataset. 
The team’s key claim is that this dataset more closely represents what an 
intelligence agency might use, thus measuring the chance for two unequal 
parties to find the same vulnerability: a government and researchers/
criminals. Given the lack of a systematic model for how the capability (and 
capacity) to discover vulnerabilities is distributed across the malware mar-
kets, including state organizations and companies, we should hesitate to 
make strong claims about how one group might represent another. 63

60	 Ibid., 15.

61	 Christopher Morris, Trey Herr, and Amy Armbrust, “Vulnerability-Rediscovery,” GitHub, MASE, 
(2017), https://github.com/mase-gh/Vulnerability-Rediscovery.

62	 Ablon and Bogart, “Zero Days, Thousands of Nights,” 101.

63	 Jaziar Radianti and Jose J. Gonzalez, “Dynamic Modeling of the Cyber Security Threat Problem: 
The Black Market for Vulnerabilities,” Cyber-Security and Global Information Assurance: Threat 
Analysis And Response Solutions, 2009, http://www.igi-global.com/chapter/dynamic-modeling-cy-
ber-security-threat/7408; Jaziar Radianti, “Eliciting Information on the Vulnerability Black Market 
from Interviews” (Fourth International Conference on Emerging Security Information, Systems and 
Technologies, IEEE, 2010), 93–96, doi:10.1109/SECURWARE.2010.23; Mingyi Zhao, Jens Grossk-
lags, and Peng Liu, “An Empirical Study of Web Vulnerability Discovery Ecosystems,” in Proceedings 
of the 22nd ACM SIGSAC Conference on Computer and Communications Security (ACM, 2015), 
1105–1117, http://dl.acm.org/citation.cfm?id=2813704.
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Vulnerability Types 

It is difficult to say with precision what systematic differences exist between 
vulnerabilities collected by the intelligence community and our dataset. 
Accurate estimation of rediscovery matters for a range of topics, including 
the VEP, research on the malware markets, and analyzing the efficacy of 
bug bounty programs. In looking at VEP, there is reason to believe that 
vulnerabilities collected and employed by the intelligence community are 
not a simple cross-section of all vulnerabilities. Software flaws in use by 
the intelligence community are likely to skew toward those most useful 
for gaining and maintaining access to the computer systems of intelli-
gence collection targets. They may also be influenced by the individuals 
and techniques used in discovering vulnerabilities. A common refrain is 
that the NSA places a significant emphasis on mathematical capabilities 
in vulnerability discovery. This emphasis could result in NSA’s collection 
of vulnerabilities containing far more cryptographic flaws than would 
be found in a random sample of software vulnerabilities anywhere in the 
public domain. The same is likely true to some degree of law enforcement 
organizations. 

The vulnerabilities examined in this paper are from open source software, 
including Chromium and the Android operating system, which means 
they represent a particular subset of the total population of software. Vul-
nerabilities in both systems would be useful to gain access to protected 
information such as in Chrome, where our sample includes several sand-
box escapes.64 Our analysis assumes nothing about the parties involved in 
rediscovery except that they are working independently. Because of this, we 
cannot characterize rediscovery as more or less likely to impact the vulner-
abilities held by an intelligence or law enforcement organization.

There is very little data on vulnerability rediscovery or collision, however 
framed, and so we must be careful about data and our methodologies. 
The RAND team sourced its data from a private organization, and some 
of the vulnerabilities in that dataset may have been in use or for sale, but 
the study disclosed little more than summary statistics about its data. The 
small size of the dataset, as well as its continued secrecy, makes effective 

64	 Includes CVE-2014-5332 and 2016-1706
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peer-review or replication very difficult. That said, the RAND paper is 
additive, including substantial material on the life and times of zero-day 
vulnerabilities, which will benefit policymakers and scholars alike.

7.	 Conclusions 

This paper provides the first transparent empirical study of vulnerability 
rediscovery in multiple types of software and across different vendors, 
considering the rate of rediscovery, the impact of time, the length of lag 
between original and duplicate discoveries, and the variation of each of 
these factors across different vendors. Where previous work has estimated 
rediscovery rates for software between 5% and 9% largely unbounded by 
time, this paper demonstrates that rates for high- and critical-severity bugs 
are higher, between 10.8% and 21.9% across the software surveyed.

The impact of rediscovery scales with the number of vulnerabilities in 
a codebase. Looking at Android, for example—in 2016 there were 287 
recorded high- and critical-severity vulnerabilities. At a rediscovery rate 
of 6%, closer to Ozment’s original estimates, Google should expect that at 
least 17 vulnerabilities known to them in 2016 will have been discovered 
by another party, potentially before being disclosed. Using the 21.9% rate 
found above, that number jumps to 63 vulnerabilities. 

At that rate, nearly 50 additional software vulnerabilities are discovered 
each year above previous estimates, many of which could be used by 
criminal groups or states before the developer patches them. The pres-
ence of these vulnerabilities in the malware markets means they may also 
be integrated into other malicious tools and see their lifespans extended 
even further. For the scholarly community, the current state of practice in 
tracking vulnerability disclosures and rediscovery is poor. This undermines 
the community’s ability to track the longer-term efficacy of investment in 
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secure development practices and bug bounty programs.65 It is also relevant 
to the discussion that even when there is a patch available, many vulnera-
bilities don’t immediately become useless, as users and organizations often 
delay applying patches for months or longer.66 Thus, a patched vulnerability 
still can still have operational utility.

The relatively long lag time between original disclosure and rediscovery, 
more than two months on average, based on data from the Android oper-
ating system, suggests that many rediscoveries are truly independent, thus 
providing a more accurate model of the behavior of malicious third parties. 
When the rediscovery window is short or nearly zero, it suggests that dis-
coverers communicated about, or were aware of, each other’s efforts. This 
would inflate the rediscovery rate but hide the fact that many were working 
from the same information. There are many reasons to believe that the 
rediscovery rates presented in this paper are an underestimate of the true 
rate of rediscovery including records from Bugcrowd which indicate that 
low- and medium-severity vulnerabilities are rediscovered more frequently 
than the high- and critical-severity bugs to which this study is constrained. 

These findings do not consider classified data. It is possible that the intel-
ligence, defense, or law enforcement communities have conducted studies 
of rediscovery and reached different conclusions; however, there is no 
evidence of this in the public domain. Our estimates are based on data 
available to all researchers, and evaluate software in common use by U.S. 
citizens and many government employees. While secret studies may exist, 

65	 Chad Heitzenrater, Rainer Böhme, and Andrew Simpson, “The Days before Zero Day: Investment 
Models for Secure Software Engineering,” in Proceedings of the 15th Workshop on the Economics 
of Information Security (WEIS), 2016, http://weis2016.econinfosec.org/wp-content/uploads/
sites/2/2016/05/WEIS_2016_paper_21-2.pdf; Pontus Johnson et al., “Time between Vulnerabil-
ity Disclosures: A Measure of Software Product Vulnerability,” Computers & Security 62 (2016): 
278–295.

66	 Terry Ramos, “The Laws of Vulnerabilities,” in RSA Conference, 2006, http://www.qualys.de/docs/
Laws-Presentation.pdf; Sandy Clark et al., “Moving Targets: Security and Rapid-Release in Firefox,” 
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security 
(ACM, 2014), 1256–1266, http://dl.acm.org/citation.cfm?id=2660320; Zakir Durumeric et al., “The 
Matter of Heartbleed,” in Proceedings of the 2014 Conference on Internet Measurement Conference, 
IMC ’14 (New York, NY, USA: ACM, 2014), 475–488, http://dl.acm.org/citation.cfm?id=2663755; 
Antonio Nappa et al., “The Attack of the Clones: A Study of the Impact of Shared Code on Vulner-
ability Patching,” in Security and Privacy (SP), 2015 IEEE Symposium on (IEEE, 2015), 692–708, 
http://ieeexplore.ieee.org/abstract/document/7163055/; Armin Sarabi et al., “Patch Me If You 
Can: A Study on the Effects of Individual User Behavior on the End-Host Vulnerability State,” in 
International Conference on Passive and Active Network Measurement (Springer, 2017), 113–125, 
http://link.springer.com/chapter/10.1007/978-3-319-54328-4_9.\\uc0\\u8220{}The Matter of 
Heartbleed,\\uc0\\u8221{} in {\\i{}Proceedings of the 2014 Conference on Internet Measurement 
Conference}, IMC \\uc0\\u8217{}14 (New York, NY, USA: ACM, 2014
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the data in this paper includes software that would have to be part of any 
such study. Our estimates are higher than previously reported in scholar-
ship available to the public, and these findings should speak directly to the 
policy community, regardless of classification.
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