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Abstract
We present a new modeling framework for studying optimal generating capacity and public RD&D 
investments in the electricity sector under decision-dependent RD&D uncertainty and learning.  
We show that when uncertainty and learning features are omitted, as is typically done in prac-
tice, the investment strategy can be considerably different from the optimal solution.  We use 
a bottom-up stochastic power generation capacity expansion model with uncertain endogenous 
RD&D-based technical change, and focus on solar PV RD&D for its current prominent role in 
the U.S. national energy and climate policy discussion.  Uncertainty in the outcome of RD&D 
investments is characterized using novel expert elicitation data, allowing for a transparent and 
consistent integration into the framework.  The problem is formulated as a multi-stage decision 
under uncertainty to represent opportunities for policymakers to learn and adapt to new informa-
tion between decision stages.  Results show that under a carbon constraint, the optimal investment 
strategy includes lower solar PV RD&D spending upfront but more RD&D spending later—and 
sometimes higher spending overall—when compared to a strategy under perfect foresight about 
RD&D outcomes, or based on single-shot decision-making under uncertainty without learning.  
We also show that when uncertainty is considered without learning, new solar PV capacity invest-
ments are depressed.  Overall, the results caution that the most common approaches used by the 
research community today to inform policy on optimal energy technology investments, including 
scenario analysis and Monte Carlo simulation that assume perfect foresight with no learning, may 
be systematically over- or under-estimating the optimal investment strategy.
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learning; solar
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1.	 Introduction 

	 Policymakers and other stakeholders currently face the tremendous challenge of address-
ing the role future electricity systems will play in realizing long-term climate change mitigation 
goals.  Of particular urgency is a need to balance near-term decisions about ongoing investments 
in new, relatively expensive, low-carbon electric power generating capacity, with investments in 
research, development, and demonstration (RD&D) aimed at innovating and commercializing the 
next generation of competitive, low-carbon generation technologies (DOE 2011; Nemet and Baker 
2009).  Achieving cost-effectiveness in promoting future low-carbon electricity systems, however, 
requires adaptively managing inherent uncertainties about the cost and availability of emerging 
technologies (NRC 2007).

	 Solar photovoltaic (PV) technology is at the forefront of the U.S. national energy policymaking 
agenda, and highlights this challenge particularly well (DOE 2012).  On one hand, new generating 
capacity investments—which may include commercially available solar PV—must continue to 
maintain a reliable electricity supply.  On the other hand, ongoing public solar PV RD&D invest-
ments can help lower the overall cost of managing carbon emissions and mitigating climate change 
if the RD&D return rate is favorable.  Given (1) the long-term strategic nature of the energy invest-
ment and climate change problem; (2) the inherent uncertainty in the outcomes to RD&D; (3) the 
opportunity to learn from interim investments and adapt future decisions; and (4) the complemen-
tary and competing roles that different technologies play within the power system, what tools can 
best support policymakers and other stakeholders in determining an optimal balance of technology 
deployment and solar PV RD&D investments over time?

	 Current decision support tools for such “deployment versus development” questions in the 
electricity sector remain restricted in scale or scope.  First, most models that contain a resolution 
of the physical electric power system sufficient to model its unique characteristics and technology 
interdependencies (e.g., temporal load variability, plant operations and constraints, energy demand 
balance, supply reliability, resource availability), and that contain an endogenous representation 
of the effect of research on technology costs, still represent decisions as being made up front as 
“single shots” assuming perfect information (e.g., Barreto and Kypreos 2004; Kouvaritakis, Soria, 
and Isoard 2000).  This shortfall remains burdensome given evidence that the optimal decision 
in complex systems often diverges under uncertainty and learning (e.g., Webster 2002; Webster, 
Santen, and Parpas 2012).

	 When uncertainty has been incorporated, computational limitations have prevented it from 
being appropriately considered in the context of multi-stage decision-making and interim learn-
ing.  Onerously, such problems are particularly prone to the “curse of dimensionality,” where their 
size grows exponentially large with the number of decisions, uncertainties, and decision periods 
normally considered in studies of real-world problems (Powell 2011).  Moreover, this curse of 
dimensionality is exacerbated when the uncertainty in the problem is either decision-dependent or 
continuous, or both.  Thus, almost 35 years after Manne and Richels (1978) presented a sequential 
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stochastic decision analytic framework for energy technology R&D decisions1, deterministic mod-
els are still widely used in combination with scenario analysis or formal Monte Carlo analysis as 
the method to integrate uncertainty, missing the opportunity to learn and adapt (e.g., Bergerson and 
Lave 2007; Richels and Blanford 2008).  More complex methods of accounting for the uncertain 
nature of research outcomes have also been employed in the context of electricity capacity and 
R&D investment planning through mapping alternative R&D-dependent technology pathways to 
outcomes of a deterministic model on an expected value basis (e.g., Blanford 2009), or introduc-
ing expected value-based penalties into the objective cost function of models (e.g., Messner et al. 
1995; Grubb 2002; Grubler and Gritsevksii 1997).  However, neither method considers the realis-
tic ability to adapt decisions over time because the impacts of early R&D investments are still as-
sumed at the outset.  Finally, stochastic programming methods with recourse have been used with 
a few models to introduce adaptive decisions and learning in a formal stochastic structure (e.g., 
Bosetti and Tavoni 2009; Kypreos et al. 2000).  Unfortunately, the use of exogenous scenario trees 
to represent uncertainty in stochastic programming still makes the approach relatively susceptible 
to dimensionality burdens.  This feature of stochastic programming is particularly salient in the 
type of decision-dependent uncertainty inherent in the energy innovation process, where decisions 
about RD&D (e.g., level of spending, timing of investments) can change future return likelihoods 
by pushing the research frontier outward (Popp, Newell, and Jaffe 2009).

	 Second, existing datasets linking research investments to improvements in technology costs 
have been relatively disconnected from the models that can support decisions about optimal elec-
tricity capacity and RD&D investments under uncertainty.  This has challenged the integration 
of consistent and transparent estimates of the uncertainty in the returns to RD&D.  For example, 
empirical studies using innovation “inputs” (e.g., RD&D expenditures) and installed capacity to 
explain historical cost-reductions are often limited by the fact that improvement can be affected by 
other factors, such as economies of scope and material prices.  Additionally, these studies do not 
typically account for the heterogeneous nature of RD&D investments, or the poor availability of 
private sector RD&D data (Popp, Newell, and Jaffe 2009; Qiu and Anadon 2012).  Other studies 
using innovation “outputs,” such as patents and patent citations to study the effect of RD&D on 
technical change (e.g., Griliches 1990; Popp 2002; Popp et al. 2013) address some of these short-
falls, but still suffer from the fact that using historical information to model future innovation may 
be inconsistent with reality (Chan et al. 2011).  Additionally, the format of results from patent and 
citation studies are often hard to translate into units of technical change that can be transparently 
introduced into detailed “bottom-up” electricity models.  Thus, many models still rely on stylized 
assumptions about research returns (e.g., Bosetti and Tavoni 2009; Blanford 2009); others that in-
tegrate more consistent data do so from a “top-down” economic perspective that limits the ability 
to study R&D effects in the context of electric power system-level generation capacity expansion 
(e.g., Popp 2004; Popp 2006).

	 Ultimately, most existing decision-support tools are either (1) still mismatched with the man-
ner in which long-term strategic investment decisions for the electricity sector are actually made—
at multiple times throughout the planning horizon, after interim collection and assessment of new 
information, and in the context of multiple interacting technologies within a power system, or (2) 
1 Manne and Richels (1978) solve for optimal U.S. breeder reactor R&D strategies using a probabilistic decision-tree 
with a small number of possible decisions (four), and a highly discretized uncertainty space (e.g., “yes/no,” high/me-
dium/low” scenarios).  The problem, as simplified, does not therefore suffer from the curse of dimensionality.
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based on stylized or inconsistent estimates about uncertainty in future technology costs.  These is-
sues can result in improper decision support to policymakers, suggesting investment strategies that 
are either too high or too low, or incorrectly timed and targeted, when compared to the optimal, 
cost-effective strategy under realistic uncertainty and the opportunity to learn.

	 In this paper, we present a new bottom-up, stochastic modeling framework with endogenous 
technical change for supporting electricity generation capacity and solar PV RD&D investment 
decisions under decision-dependent uncertainty and learning.  The new model is formulated as 
a formal sequential decision under uncertainty problem, and solved using multi-stage stochas-
tic dynamic programming.  Specifically, we adapt emerging approximate dynamic programming 
techniques to manage the dimensionality burden that arises from integrating continuous uncertain-
ties through multiple decision periods, and the complexity of representing the decision-dependent 
uncertainties reflective of the innovation process.  In a stepwise manner, we show the value of 
using the new stochastic approach over dominant “single-shot” approaches, which do not integrate 
uncertainty, and scenario approaches, which account for uncertainty but do not account for the 
opportunities policymakers have in adapting their investment decisions over time.  We also char-
acterize the uncertainty in the solar PV RD&D process using expert elicitation data, which allows 
for a transparent and consistent integration into the bottom-up modeling framework.  Results from 
the new framework can inform policymakers about how to balance near-term spending on deploy-
ment versus development programs for emerging low-carbon electricity technologies in the face 
of RD&D uncertainties.

	 The remainder of the paper is organized as follows.  Section 2 presents the new modeling ap-
proach, outlining the multi-stage decision problem and characterization of the solar PV RD&D 
uncertainty.  Section 3 presents optimal investment strategy results from the stepwise comparison 
of a single-shot deterministic approach, a formal Monte Carlo analysis to integrate uncertainty, and 
the formal stochastic dynamic programming approach to integrate both uncertainty and learning, 
and does so within the context of two different carbon policy regimes.  Section 3 also presents 
results of a sensitivity test to check robustness of the results.  Section 4 concludes with summary 
discussion and suggestions for future research.

2.	 Methods

2.1	 Model Overview
	 We formulate the research question as a multi-period sequential decision under uncertainty 
problem, with an opportunity to learn and adapt decisions between decision stages.  The model 
consists of four decision stages, with decadal time steps intended to cover approximately 2010-
2050.  New power plant capacity investment decisions for four possible technology groups (con-
ventional coal, conventional natural gas, wind, and solar PV) and RD&D investment decisions for 
carbon-free solar PV are made in each decision period to operate the power system and reliably 
meet electricity demand, and to propagate additional technical change in solar PV, prior to learning 
about the amount of technical change the RD&D will produce.  RD&D investment is represented 
as a continuous range of values between “business-as-usual” U.S. public spending on solar PV and 
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ten times the amount of RD&D recommended by technology experts in the field (Anadon et al. 
2011)2.  After each decision stage, the decision-maker learns about the realized amount of techni-
cal change, and has an opportunity to adapt her next decision based on the “state of the world” 
she finds herself in.  The decision-maker in this context is a hypothetical central decision-maker 
who seeks to minimize total system costs for both capacity deployment and emerging technol-
ogy development3.  As described in more detail below, uncertainty about solar PV innovation is 
modeled as a decision-dependent process where higher levels of RD&D correspond to a greater 
likelihood of higher future returns (i.e., larger investment cost reductions).  Operation of the under-
lying power system and reliability of supply are represented using a least-cost generation capacity 
expansion planning approach, with optimal dispatch.  In each case, a cumulative carbon emissions 
cap is also in place to simulate a climate change policy (or no cap in the case of no policy).  

	 We use an underlying electricity system that consists of a large base of conventional pulverized 
coal and natural gas plants, some wind power, and a small base of emerging utility-scale solar PV.  
Combined, the total gigawatts installed in the base year approximates the size of the U.S. system 
in 2010 (EIA 2010). The base year for electricity load is also an approximation of annual U.S. 
electricity demand, specified in seventeen segments for time of day and season.  Full model details, 
parameter values, and underlying electricity system data are given in an appendix, available upon 
request.

2.2	 Mathematical Formulation
The objective of the stochastic problem is:

where NC is new capacity investment, RDD is the RD&D investment level in solar PV, θ is the 
uncertain technical change for solar PV, C is the discounted total system cost, and subscripts g, g*, 
and t represent technology groups, emerging solar PV, and time, respectively.  Stochastic dynamic 
programming is used to structure the problem, an approach that uses the Bellman equation (Bellman 
2003) to decompose the multi-period problem into a simpler set of conditions that must hold for 
all decision stages:

where Vt is the “Bellman Value.”
2 2010 BAU solar PV spending = $143M, the recommended amount of solar PV spending by the median technology 
expert = $200M, and ten times the median recommended amount = $2000M (Anadon et al. 2011) 
3 For simplicity, we assume a perfect market and can thus consider RD&D investments from the perspective of the 
public RD&D decision-maker, and capacity investments from the perspective of the utility or other power producer.
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Costs in each stage are computed as: 

where OC is the total overnight capital cost for new power plant installations, FC are fixed opera-
tion and maintenance costs, VC is the variable (and fuel) cost from optimally dispatching the tech-
nologies to meet electricity demand in each of seventeen time-of-day and seasonal load duration 
curve slices, SV is a potential penalty for breaking the carbon cap (equivalent to executing a carbon 
emissions “safety valve” option), RDD is the solar PV RD&D investment; r is the discount rate4.

2.3	 Uncertainty in solar PV RD&D-induced technical change
	 We explicitly represent the innovation process and the uncertainty in returns to solar PV 
technology research in the modeling framework.  Specifically, we model the type of innova-
tion propagated by public RD&D spending.5  This technical change enters the model as explicit 
RD&D-induced overnight capital cost reductions in utility-scale solar PV technology, via a shifted 
log-logistically distributed random variable conditional on the level of RD&D:

 

where oc is the overnight capital cost per GW solar PV, θ is its realized cost reduction, and μ, σ, 
and ξ are the location, scale, and shift parameters of the shifted log-logistic density function.  

	 We use the solar PV capital cost dataset resulting from a recent large-scale expert elicitation 
study that gathered estimates about future costs and performances of several emerging energy 
technologies, including their uncertainties, for various levels of RD&D (Anadon et al. 2011), and 
develop shifted log-logistic probability density functions for the RD&D-cost reduction relation-
ships by extending the method outlined by Chan and Anadon (2014).  We employ conditional den-
sity functions to represent the feature of decision-dependence inherent in the innovation process.  
Full details on the construction of the density functions and data used, as well as examples of the 
resulting functions, are provided in an appendix, available upon request.

4 Note that we use a centralized electricity market structure for the generation capacity expansion and optimal dis-
patch problem.  We use this over a decentralized representation due to the long-term strategic nature of the invest-
ments under study in this research, and the large structural uncertainties present in short-term market behaviors of 
individual firms over such long time frames (Pérez-Arriaga and Meseguer 1997)
5 Historical public U.S. RD&D spending data for each of the emerging technology groups was provided to the technol-
ogy experts as background information during the expert elicitation study, and experts were asked to base their cost 
and uncertainty estimates on public RD&D spending and its possible effects (Anadon et al. 2011).
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2.4	 Solution Methods
	 The stochastic dynamic programming (SDP) sequential decision problem formulated above 
has a finite horizon, and is traditionally solved as a Markov Decision Problem (Bertsekas 2007) 
using a backward induction algorithm.  However, the algorithm exhaustively iterates over the 
state, decision, and uncertainty spaces for each decision period to calculate the exact Bellman 
Value function and corresponding “policy function” (decision strategy) in each stage.  Due to the 
continuous nature of the capacity and RD&D investment decisions in this problem, as well as the 
continuous and decision-dependent nature of the uncertainty, we employ approximate dynamic 
programming (ADP) techniques to manage the curse of dimensionality encountered, and solve the 
problem more efficiently.  ADP is a family of methods (e.g., Bertsekas and Tsitsiklis 1996; Powell 
2011) that approximates the value function in each period by adaptively sampling the state space 
to focus on lower expected value states until the Bellman Value function converges.  We use an 
ADP algorithm developed by Webster, Santen, and Parpas (2011), and employed by Santen (2012) 
for electricity sector R&D investment planning under uncertainty, which uses a two-phased ap-
proach of constrained Latin Hypercube Sampling followed by random sampling to search over 
the state space; and a Moving Least Squares method to approximate future Bellman Values via 
interpolation. 

	 For the comparison of methods exercise, we also constructed a deterministic non-linear pro-
gramming (NLP) version of the model with underlying features identical to the SDP.  The NLP as-
sumes perfect foresight about returns to RD&D.  We use the deterministic model directly to study 
the decision problem under no uncertainty and no learning, and in a Monte Carlo analysis to study 
the decision problem under uncertainty but no learning.  We use 500 modified Latin Hypercube 
Monte Carlo samples of solar PV capital cost reduction uncertainty and the deterministic version 
of the model to perform the Monte Carlo analysis.

3.	 Results
	

	 In this section, we present results from solving the electricity capacity and RD&D investment 
decision problem with and without uncertainty and learning, and under two different carbon policy 
regimes.  We present the results from each subsequent case (first the stochastic dynamic program, 
then the Monte Carlo analysis) against the original deterministic results in order to explicitly com-
pare the effect uncertainty and learning has on the investment strategy, with the effect state of the 
art methods of incorporating uncertainty (but no learning) through Monte Carlo analyses have.  
The two carbon policy regimes explored include a “no policy” case with unconstrained carbon 
emissions, and a policy case with a moderately stringent cumulative carbon emissions cap equiva-
lent to reducing annual emissions from the power sector fifty percent from “business as usual” 
in 2010.  Finally, we present and discuss robustness of the results from a sensitivity analysis on 
RD&D-based technical change using additional expert elicitation data from Anadon et al. (2011).
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3.1	 Optimal investment strategy under uncertainty and learning	
	 When no carbon policy is present and electricity sector emissions are allowed to grow uncon-
strained over time, the investment strategy under uncertainty and learning differs only negligibly 
from the deterministic strategy (Figures 1 and 2).  In both cases, the capital investment strategy 
involves investing in new coal and gas plants, and the near-term solar PV RD&D investment strat-
egy differs only by about one percent of the maximum possible RD&D investment level.  This is 
expected given the lack of incentive to reduce carbon emissions from business-as-usual6.  The 
minor difference in the RD&D strategy is anticipated, due to use of the heuristic-based ADP 
method that has a small degree of irreducible error (Powell 2011).  Note that consistent with the 
output of solving stochastic decision problems with learning, we present the first period decision 
as a single implementable decision (Figure 1), and future period decisions as a “decision rule” 
conditional on the state of the world (Figure 2).7  

Figure 1 Optimal first period annual solar PV RD&D under uncertainty and learning (black bars) and under perfect 
foresight (hashed bars) with no carbon policy (left) and with a carbon policy (right)

	 In the presence of a moderate carbon constraint the optimal solar PV RD&D investment strat-
egy diverges considerably from the deterministic investment strategy. Overall, the carbon con-
straint favors deploying renewable technologies such as wind and solar (over coal and gas) to 
reduce carbon emissions, and developing solar PV through RD&D to reduce costs.  However, 
under uncertainty and learning, the near-term (first-period) optimal solar PV RD&D investment 
is substantially lower than the deterministic strategy (although still above BAU spending levels) 
(Figure 1).  This change represents a difference of over 20 percent of the maximum possible 
RD&D investment level.  In contrast, Figure 2 compares the range of optimal RD&D investment 
6 For simplicity, and to isolate the effect of carbon policy on technology choice, we ignore other potential drivers of 
solar PV deployment such as high fossil fuel costs or competing technology capacity constraints.
7 The minimum level of RD&D, representing business-as-usual, is always optimal for the third and fourth periods 
due to the temporal nature of the decision problem.  No new capacity investments are made in the fourth period due 
to an “end of the world” effect after the last period, and it is never optimal to invest more than the minimum invest-
ment in these later periods because RD&D investments affect capital costs in the next decade.
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decisions in the stochastic decision rule and the deterministic optimum, showing that the optimal 
RD&D investment under uncertainty and learning is higher than under perfect foresight for all 
possible technical change futures in the second period.  Under some realizations of the future, 
optimal RD&D spending in the second period is so high that even cumulative RD&D spending is 
higher under uncertainty and learning than under an assumption of perfect foresight.

(a) No carbon policy case

(b) Carbon policy case

Figure 2 Optimal future annual solar RD&D investments under uncertainty and learning (solid lines) and under per-
fect foresight (dashed line) (Note: The stochastic investment strategy is presented as a decision rule with percentiles 
because the optimal future decision is conditional on the future state)



Belfer Center for Science and International Affairs  |  Harvard Kennedy School 9

	 The optimal solar PV RD&D investment is lower in the near term than the deterministic strat-
egy so that the benefits of learning between Period 1 and Period 3 (when heavy solar PV deploy-
ment occurs to meet the cumulative carbon cap) may be fully realized.  This pattern of waiting 
until later periods to meet a cumulative emissions cap with deployment of low-carbon technolo-
gies such as solar that are farther from the market, and investment in their RD&D upfront, is con-
sistent with the findings in the electricity R&D investment planning model of Santen (2012).  

	 It is noteworthy that some positive RD&D over the minimum BAU level is optimal in the first 
period in the stochastic case.  One might ask, if waiting to learn is the best strategy, why invest 
anything at all upfront?  The decision-dependent nature of the RD&D uncertainty in our work 
helps explains this result.  Investing early in RD&D provides a snowball effect on reducing the 
cost of solar PV by the time it needs to be built.  The higher RD&D investment occurs in order to 
take advantage of potential early “tail” opportunities for return on the investment, and propagates 
this snowball effect.  Meanwhile, if early realized RD&D returns do not turn out to be favorable 
(only modest cost reductions are realized), there is still time before solar PV deployment to adapt 
the investment strategy.

	 Lastly, once again there is negligible difference between the stochastic and deterministic re-
sults for new capacity deployments.  Given the specific capital cost reduction potentials consid-
ered, there remains a dominant deployment plan that meets all constraints in a least-cost manner.  
In the presence of the carbon constraint, RD&D investment alternatives afford an opportunity to 
reduce total system costs further.

3.2	 Optimal investment strategy under uncertainty without learning
	 When RD&D uncertainty continues to be considered, but the realistic opportunity for the deci-
sion-maker to learn about solar RD&D returns between decision periods and adapt her decisions is 
still ignored, the optimal strategy diverges from the strategy under perfect foresight in a different 
way.  Under no carbon policy, considering uncertainty changes neither the optimal RD&D invest-
ment path nor the capacity investment path from when perfect foresight is assumed.  As in the 
previous section, solar PV is not part of the optimal deployment plan when emissions are uncon-
strained; considering a known median level of return on RD&D investments, the decision-maker 
knows to choose the minimum level of RD&D possible.   

	 Under a carbon policy, considering uncertainty reduces the level of solar PV RD&D invest-
ment in both the first and second period from the deterministic strategy (although once again it is 
still higher than current BAU spending levels) (Figure 3).  Note that in the case of decision prob-
lems without learning, for which a deterministically structured model is used in a Monte Carlo 
analysis, the result is the familiar optimal implementable investment path (in contrast to a decision 
rule).  In this case, we use mean outputs for capacity and RD&D investments to compute the opti-
mal path under uncertainty.8  

8 Resulting optimal new capacity investment paths were re-tested in the optimal dispatch component of the model to 
ensure that all electricity system constraints remain satisfied and that the investment strategy was viable.
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Figure 3 Optimal annual solar RD&D with uncertainty (zigzagged bars) and without uncertainty (hashed bars) 
under a carbon policy

	 The decrease in first and second period solar PV RD&D investments can be explained by the 
associated capacity investment strategy.  While there is negligible difference across first period 
capacity investments under uncertainty and no uncertainty (Figure 4a), there is a large difference 
between investments by the third period (Figure 4b).  Under uncertainty, the capacity investment 
strategy involves investing twice as much wind as solar PV, whereas under a perfect foresight 
assumption this balance flips and the strategy involves investing almost twice as much solar PV 
as wind capacity.  In this case of uncertainty without learning, it is the lower level of solar PV de-
ployment under uncertainty that produces, on average, an RD&D investment strategy that remains 
lower than under perfect foresight throughout the planning horizon.  Overall, ignoring RD&D 
return uncertainty underestimates the role of the emerging technology in the physical system (i.e., 
underbuilds solar PV), underestimates the amount RD&D investment in the first period should 
be lower, and incorrectly assumes that continue lower investment is optimal when RD&D should 
actually be higher in the second period.
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		            Under Uncertainty				                Under Perfect Foresight

(a) First period
    

(b) Third period

Figure 4 Optimal capacity investment ratios under uncertainty (left) and under perfect foresight (right); Legend: gas 
= white; wind = gray; solar = black; there is no new coal capacity in these scenarios

3.3	 Sensitivity to technical change uncertainty	
	 We check the robustness of the results to the level and characterization of the uncertainty in 
RD&D returns.  The expert elicitation dataset of Anadon et al. (2011) employed contains future 
overnight capital cost estimates for solar PV from a variety of solar technology experts, and the 
original stochastic model uses estimates based on the “median” expert.  In this subsection, we 
present results from solving the stochastic model with uncertainty characterized instead using the 
most optimistic and most pessimistic experts, and compare the optimal investment strategy to the 
original model’s optimal investment strategy, as well as to their respective deterministic invest-
ment strategies.  “Optimistic” corresponds to the expert that estimated the 2030 costs of utility 
solar PV to be the lowest, while “pessimistic” corresponds to the expert that estimated 2030 costs 
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to be the highest.  Online Resource 3 shows examples of the resulting alternate probability density 
functions and provides details about the data used for their construction.  We apply a moderately 
stringent carbon policy for this discussion, as used above.

	 Overall results from the sensitivity analysis show that lower near-term RD&D investment, 
higher second period RD&D investment, and a relatively fixed capacity deployment plan (com-
pared to using an assumption of perfect foresight), are robust to a wide range of future cost possibil-
ities for utility solar PV.  We also show a trend of increasing divergence of the optimal first-period 
RD&D investment strategy under uncertainty and learning from the deterministic strategy (i.e., 
greater levels of pessimism about future cost reduction possibilities induce additional lowering of 
first-period RD&D from the deterministic strategy on a percentage basis) (Figure 5).  Moreover, 
very optimistic future costs for solar PV allow the stochastic solution to begin approaching the 
deterministic solution (in Figure 5, the change is only modest, at less than 1% of the maximum op-
timistic RD&D level).  The optimal RD&D investment strategy continues to be higher than BAU 
spending levels throughout the sensitivity analysis, as well. 

Figure 5 Optimal first-period RD&D investments under three RD&D return uncertainty estimates and learning.  
(Note: Pessimistic RD&D Max = $3000M per year; Median RD&D Max = $2000M per year; Optimistic RD&D 
Max = $10,000M per year)
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4.	 Concluding Discussion
	

	 In this paper, we presented a new modeling framework for simultaneously choosing sequential 
capacity and solar PV RD&D investments for the electric power generation sector under decision-
dependent technical change uncertainty and carbon constraints.  We numerically solved for the op-
timal investment strategy under uncertainty and learning using stochastic dynamic programming, 
and compared the optimal strategy to numerical solutions of the decision problem under uncer-
tainty and no learning, as well as under perfect foresight (deterministic with no learning).  Through 
this explicit comparison, we showed the importance of using a formal stochastic approach over 
the current dominant approach of using scenario analysis or Monte Carlo analysis to study optimal 
investment strategies under uncertainty in this context.  

	 Results show that under a moderately stringent carbon policy, the optimal RD&D investment 
strategy for an emerging low-carbon technology such as solar PV involves spending less upfront 
when uncertainty and learning are explicitly considered than when perfect foresight is assumed, 
and involves adapting the investment decision to new information in the second period by in-
creasing RD&D investment accordingly.  This is true even though it is not optimal to change the 
capacity deployment plan in the presence of uncertainty and learning.  We also show that, despite 
the first period investment being lower and second period investment being higher than the deter-
ministic strategy, 1) RD&D spending under a carbon policy is always higher than current BAU 
spending levels, and 2) under some possible technical change futures, the second period RD&D 
investment can be high enough to result in higher RD&D spending overall.

	 Moreover, we revealed that a Monte Carlo analysis of the same decision problem, which con-
siders uncertainty but no learning, underestimates the amount solar PV RD&D investment should 
be lowered from the deterministic strategy, and incorrectly indicates that keeping RD&D invest-
ment lower in the second period is optimal.  With respect to capacity deployment, the Monte Carlo 
analysis also incorrectly suggests that in the presence of possible R&D failures, capacity invest-
ment switching is optimal.  In fact, with the opportunity to learn and adapt the RD&D investment 
decision over time, the stochastic model shows that it is not always necessary to change the original 
deployment plan.   Figure 6 summarizes the first-period RD&D investments across the three cases 
presented in this paper by showing the optimal investment strategies normalized as a percentage 
change from the maximum RD&D investment possible.  Under no policy, the differences between 
optimal solutions are negligible and ultimately within error bounds of the ADP method.  However, 
in the presence of a carbon policy when there is additional solar PV deployment, we caution that 
over-reliance on Monte Carlo or other scenario methods using deterministically structured models 
may be providing improper decision support in this context.  These methods do not capture 1) the 
full extent of the optimal RD&D reduction from the deterministic strategy in near-term; 2) that 
RD&D investment in the second period is actually be higher than the deterministic strategy, not 
lower; and 3) the fact that capacity switching is not always optimal.
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Figure 6 Change in first-period solar PV RD&D investment strategies from the deterministic strategy under no 
carbon policy (left) and a carbon policy (right), with respect to maximum possible RD&D investments.  Legend: 
RD&D under uncertainty (no learning) = zig-zagged bars, stochastic RD&D = black bars (Note that under “no 
policy,” the optimal strategy under uncertainty (no learning) is the same as the deterministic strategy and therefore 
has a value of zero on this percentage change graph)

	 The ability to learn and incorporate new information between decision periods is a key feature 
producing our results.  In the carbon policy case under uncertainty but no learning, the optimal ca-
pacity investment strategy for solar PV was lower than the optimal strategy under perfect foresight.  
Solar PV RD&D investment decreased as a natural result (there was less overall benefit from the 
investment).  However, under uncertainty and learning, the optimal capacity investment strategy 
for solar PV remained the same as the strategy under perfect foresight.  Why, then, did the near-
term RD&D investment decrease even further?  With learning and adaptation explicitly accounted 
for in the modeling framework, the optimal near-term strategy incorporated future benefits from 
risky RD&D investments and high-reward “tail event” cost reductions by expanding the decision 
rule in future periods.  Likewise, the impact of downsides from high-risk RD&D investments that 
do not yield favorable returns can be reduced because in the case of observing an unfavorable 
RD&D outcome, the decision-maker can select a new investment path to help her stay as close 
to the global optimum as possible.  When this flexibility is possible and the decision-maker need 
not select a single path at the beginning, she can “hedge” against future uncertainties by investing 
more modestly at the start.  Higher RD&D investment in the future can also be discounted, lower-
ing the net present value of the total investment costs.
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	 The specific nature of the uncertainty incorporated also played an important role in constructing 
the optimal investment strategy under uncertainty and learning.  Using alternate data on RD&D-
based solar PV cost-reduction potentials from the most optimistic and pessimistic solar technology 
experts in Anadon et al. (2011), we showed that under a carbon policy the magnitude of the first-
period hedge varies substantially, although it remains optimal to keep RD&D investment lower 
than the deterministic strategy.  When it is possible to learn and adapt to interim information about 
the RD&D return rate, incremental RD&D steps are optimal.  Furthermore, the sensitivity analysis 
suggests that increasing pessimism about the future costs of solar PV only amplifies the notion of 
ramping RD&D investment up after learning can occur. 

	 Future research should focus on scaling the stochastic modeling framework outlined in this 
paper to an industrial-scale energy systems model with additional electricity technologies, RD&D 
choices and associated RD&D uncertainties, and uncertainties such as fuel price and renewable re-
source availability.  With respect to capacity and RD&D decisions, it would be helpful to compare 
the effect of multiple interacting technologies competing for RD&D investment with the solar-
only RD&D program studied in this paper, to further comment on the generalizability of results.  
Additionally, it would be valuable to develop frameworks for integrating innovation on demand-
side technologies and electricity storage opportunities.  Including technical change in emerging 
technologies such as plug-in hybrid and electric vehicles, automated demand response programs, 
smart grids, and electricity storage would complement the existing supply side technical change 
outlined in the framework.
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