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Massachusetts, USA

This article discusses the history of China’s production of highly enriched uranium and
plutonium for nuclear weapons and uses new public information to estimate the amount
of highly enriched uranium and plutonium China produced at its two gaseous diffusion
plants and two plutonium production complexes. The new estimates in this article are
that China produced 20 ± 4 tons of HEU, 2 ± 0.5 tons of plutonium, and currently
has stockpiles of about 16 ± 4 tons of HEU and 1.8 ± 0.5 tons of plutonium available
for weapons. The values for China’s fissile material production are at the low end of
most previous independent estimates, which range from 17–26 tons of highly enriched
uranium and 2.1–6.6 tons of plutonium. These new estimates would be significant to
assess China’s willingness to join a fissile material cutoff treaty and a multilateral
nuclear disarmament.

China launched its nuclear-weapon program in the mid 1950s. Initially, with
assistance from the Soviet Union, China began to construct fissile-material
production facilities in the late 1950s. Highly enriched uranium (HEU) produc-
tion began in 1964 and plutonium production in 1966. In the late 1960s, China
began to construct a second set of plutonium and HEU production facilities in
Southwest China, far from the coast and border with the Soviet Union, which
came into operation in the 1970s. This “Third Line” program was intended to
provide China with backup facilities in case the first production facilities were
destroyed.

China has kept information about its stocks of fissile materials and nuclear
weapons secret. While China has not declared officially that it has ended HEU
and plutonium production for weapons, it is believed to have done so after
Beijing began to give priority to its economic and political reforms in 1978.
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China’s HEU and Plutonium Production and Stocks 69

Table 1: Operating history of China’s military fissile-material-production facilities.

Facility Start up Shutdown

Enrichment plants
Lanzhou gaseous diffusion plant 1964 Stopped HEU production in 1979
Heping gaseous diffusion plant 1975 Stopped HEU production in 1987
Plutonium production Reactors
Jiuquan reactor 1966 Shutdown in 1984
Guangyuan reactor 1973 Shutdown in 1989?
Reprocessing facilities
Jiuquan intermediate pilot plant 1968 Shutdown in early 1970s
Jiuquan reprocessing plant 1970 Shutdown around 1984
Guangyuan reprocessing plant 1976 Shutdown around 1990

China moved to reduce military HEU and plutonium production, switching
some facilities to civilian purposes and closing others, finally stopping produc-
tion of HEU in 1987 and of plutonium by about 1990.

Table 1 summarizes the start-up and shut-down dates for China’s military
uranium enrichment and plutonium production facilities.

Without knowledge of the operating history and power of China’s
plutonium-production reactors and the capacities of its uranium enrichment
plants, any estimates of China’s fissile material stocks will have great uncer-
tainties.

Based on new public information, the revised estimates in this article are
that China produced 20 ± 4 tons of HEU, 2 ± 0.5 tons of plutonium and cur-
rently has stockpiles of about 16 ± 4 tons of HEU and 1.8 ± 0.5 tons of pluto-
nium available for weapons.1 The values for China’s fissile material production
are at the low end of most previous independent estimates, which range from
17–26 tons of HEU and 2.1–6.6 tons of plutonium.2 The new plutonium es-
timate is consistent, however, with a U.S. Department of Energy assessment
from 1999 that China had a stockpile of 1.7–2.8 tons of plutonium for weapons.3

HIGHLY ENRICHED URANIUM PRODUCTION AND INVENTORY

China has produced HEU for weapons in two complexes:

• The Lanzhou gaseous diffusion plant (Plant 504)

• The Heping gaseous diffusion plant (Plant 814), a “Third Line” facility.

China also used these enrichment plants to produce HEU for its research
reactors and low-enriched uranium (LEU) for naval reactors. Today, China op-
erates two centrifuge enrichment plants at Hanzhong (Shaanxi province), and
at Lanzhou (Gansu province) to produce LEU for civilian purposes.4
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70 Zhang

Lanzhou Gaseous Diffusion Plant
In 1958, with help from the Soviet Union, China started the construction

of a gaseous diffusion plant on a bank of the Yellow River in Lanzhou, in Gansu
province (Figure 1). Two years later, the Soviet Union withdrew its technical
experts.5 The Lanzhou plant produced its first weapon-grade HEU in January
1964 and, over the next few months, enough for China’s first nuclear test in
October 1964.

There were early efforts by the United States to assess the enrichment ca-
pacity of the Lanzhou plant using aerial and satellite imagery, but it proved
to be difficult to make reliable estimates. The United States used the U-2 spy
plane to photograph the Lanzhou site in September 1959.6 Progress was re-
vealed by further U-2 photos taken in March and June 1963. U.S. intelligence
believed, however, that the processing building was large enough to contain
only about 1800 compressor stages, substantially less than the 4000 stages
required to produce weapon grade materials.7 Moreover, the U.S. government
worked on the presumption that plutonium, not uranium, would be the fissile
material in China’s first bomb.8 It was therefore a surprise when analysis of
residues in the atmosphere from China’s first nuclear explosion identified it as

Figure 1: Lanzhou gaseous diffusion plant. Satellite image from 5 July 2004 (Coordinates: 36◦
09′2.68′ ′N/103◦ 31′06.35′ ′E). Source: DigitalGlobe and Google Earth.
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China’s HEU and Plutonium Production and Stocks 71

an HEU-based bomb.9 In December 1964, a U-2 flight equipped with infrared
detection systems confirmed that the Lanzhou plant was indeed operating.10

In 1972, the U.S. Defense Intelligence Agency (DIA) estimated that
Lanzhou was producing 150–330 kg per year of HEU.11 This production rate is
equivalent to 24,000–53,000 separative work units (SWU) per year at a tails
assay of 0.5 percent, or 30,000–66,000 SWU per year for 0.3 percent tails.12

China’s official nuclear history notes that the capacity of the Lanzhou fa-
cility was increased after it started operating, aided by the use of a new type of
separation membrane.13 Chinese media reports suggest the design capacity of
the Lanzhou plant doubled by the end of the 1970s.14 Western sources indicate
Lanzhou had achieved a capacity of 180,000 SWU per year by 1978.15

In 1978, China adopted a policy of economic reform. As part of this shift,
it appears that in 1980, Lanzhou stopped production of HEU and shifted to
making LEU for civilian power reactors.16 In 1981, China began to supply
LEU for the international market.17 Previous estimates of China’s HEU pro-
duction generally have assumed the Lanzhou plant stopped HEU production
for weapons in 1987.

Enrichment capacity at Lanzhou increased further during the 1980s and
it was reported in 1989 that the plant was operating at a capacity of about
300,000 SWU per year.18 In 1998, however, the decision was made to decom-
mission the Lanzhou facility as part of a project aimed at replacing China’s
gaseous diffusion technology with centrifuge enrichment.19 A new centrifuge
enrichment facility provided by Russia with a capacity of 0.5 million SWU per
year began operation in 2001. By agreement with Russia, this plant produces
only LEU for non-weapons purposes.20

Based on the above information, the following assumptions are made con-
cerning the historical development of HEU production at the Lanzhou gaseous
diffusion plant:

• From 1964–65, about 20,000 SWU/yr at a tails assay of 0.5 percent;

• From 1966–70, a linear increase from to 50,000 SWU/yr at a tails assay of
0.5 percent;21

• From 1971–75, a linear increase to 90,000 SWU/yr at a tails assay of 0.3
percent; and

• From 1976–79, a linear increase from 90,000 to 180,000 SWU per year at
a tails assay of 0.3 percent

• HEU production stopped in 1980 and the plant produced LEU from 1980
until 1987, when it ended operations

Based on the above information, it is estimated that operating continu-
ously at full capacity up to 1980, the Lanzhou plant would have produced 1.1
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72 Zhang

million SWU. This would be sufficient to produce about 6 tons of weapon-grade
(90 percent enriched) HEU. It is assumed that thereafter, the Lanzhou plant
produced LEU until 1987, when it ended operations.

Heping Gaseous Diffusion Plant
China built its second gaseous diffusion plant as part of its “Third Line”

defense program. The Heping facility (also known as Plant 814) is located in
the Heping Yizu area of Jinkouhe, in Sichuan province. It is believed to have
started operating around 1975 and stopped HEU production in 1987.22 In the
late 1980s, based on China’s “military-to-civilian conversion” policy, this plant
was converted to other purposes, including fluorine production.

Given the paucity of public information available about this plant, there
is little basis for more than a rough estimate of its HEU production. Based on
satellite imagery the Heping plant had a slightly larger processing building
than that of the Lanzhou facility. It is assumed that the original capacity of
the Heping plant was not significantly larger than that of the Lanzhou plant
in 1975, i.e., about 90,000 SWU per year.23 This reflects the fact that, when
Beijing decided to build the “Third Line” fissile material production facilities,
its first production facilities were just coming into operation and there was
no reason for Beijing to build significantly larger backup facilities than those
that were being backed up.24 It also is assumed that, like the Lanzhou plant,
the Heping plant roughly doubled its capacity by the end of the 1970s. This
is consistent with a report that the output of the Heping plant before it shut
down was 200,000–250,000 SWU per year.25

The following history is therefore assumed for the capacity of the Heping
plant:

• From 1975–79, a linear increase from 100,000 to 230,000 SWU per year at
a tails assay of 0.3 percent

• From 1980–87 the plant operated at 230,000 SWU per year at a tails assay
of 0.3 percent

• In 1987, the plant ended HEU production.

In this scenario, operating continuously at full capacity up to 1987 the Hep-
ing plant would have produced 2.7 million SWU, sufficient to produce about 14
tons of HEU.

Together, the Lanzhou and Heping gaseous diffusion plants therefore
would have produced roughly 3.8 million SWU, enough to make about 20 tons
of weapon-grade HEU (see Figures 2 and 3). This estimate assumes that China
used only natural uranium feed for its enrichment program. It is possible
that some of China’s HEU was produced from reprocessed uranium recovered
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China’s HEU and Plutonium Production and Stocks 73

Figure 2: Reconstructed history of total enrichment work done by the Lanzhou and Heping
GDPs during the periods when they were producing HEU (thousands of SWU/yr).

from its plutonium production reactors.26 Enriching reprocessed uranium,
which contains less uranium-235 than natural uranium, would have required
more SWUs per kilogram of HEU produced but the effect would not have been
large.27

Figure 3: Cumulative production of HEU at Lanzhou and Heping GDPs.
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74 Zhang

In addition to producing HEU for nuclear-weapons, China’s gaseous diffu-
sion plants also would have supplied enriched uranium for research and naval
reactors.

Research Reactor Fuel
China has had two HEU-fueled research reactors: the 125 megawatt ther-

mal (MWt) High Flux Experimental and Test Reactor (HFETR); and the 5 MWt
Min Jiang Test Reactor (MJTR).28 The HFETR reached criticality in 1979 and
converted to LEU fuel in 2007. The MJTR reached criticality in 1991 and
converted to LEU fuel in 2007. Before conversion, these two reactors would
have together consumed about 1 ton of HEU.29 This would correspond to about
200,000 SWU at a tails assay of 0.3 percent.

Russia has supplied China with some HEU fuel for research reactors.30

China, as of 2003, was estimated to have about 1 ton of civil HEU enriched by
itself and by Russia.31 This amount of civil HEU would have been sufficient to
supply China’s research reactors. China’s use of HEU for research reactors in
the future may be insignificant.

China’s Experimental Fast Reactor (CEFR), which reached criticality in
July 2010, has a first loading of almost 240 kg of HEU (enriched to 64.4 percent
uranium-235), provided by Russia.32 The CEFR will use plutonium-uranium
fuel in later loadings, as will China’s planned future fast reactors.

Naval Reactor Fuel
China launched a nuclear-powered submarine program in 1958. Desiring

that these submarines not compete with the nuclear-weapon program for HEU,
China decided to use less than 5 percent enriched LEU fuel for its naval reac-
tors.33 A land-based prototype reactor began tests in May 1970, becoming fully
operational in July 1970. The whole-life test of the reactor core ended in De-
cember 1979 and the spent fuel was discharged in 1981.34

China’s first Type 091 Han-class nuclear-powered attack submarine en-
tered service in 1974, and was retired in 2000. It is reported that China cur-
rently has four Han-class and two new Type 093 Shang-class nuclear-powered
attack submarines in service.35 The first nuclear-powered strategic ballistic
missile submarine (SSBN, Type 092 Xia-class) was launched in 1982 and went
on patrol in 1986. One Xia-class SSBN is operational today but it has never
gone on patrol.36

Each of these submarines has one 90 MWt pressurized-water reactor.37 If
the reactor cores are designed to have life spans of 10 years, it is estimated
that each fuel load of China’s naval reactors would require about 2.3 tons of
5 percent LEU. 38 The Lanzhou and/or Heping plants would have needed to
produce LEU for about 10 naval reactor cores before 1980 to meet the demand
for one core for the land-based prototype reactor, five cores for the Han-class
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China’s HEU and Plutonium Production and Stocks 75

submarines, one core for the Xia-class SSBN and a few spares.39 This would
have reduced the SWU available for making HEU for weapons by about
170,000 SWUs at a tails assay of 0.3 percent.40

Altogether, China’s two gaseous diffusion plants would have supplied
roughly 360,000 SWU of enriched uranium for non-weapon purposes. This
would have left an estimated 3.4 million SWU available for producing weapons
HEU, sufficient to produce about 17 tons of weapon-grade HEU.

Losses and Uses of HEU Produced for Weapons
Some of the HEU produced for weapons was consumed in nuclear weapon

tests and process losses.

Nuclear Tests
China conducted 45 nuclear-weapons tests.41 The first seven were carried

out before China had plutonium available for weapons and presumably all
were HEU weapons, including the 3-megaton thermonuclear weapon test in
June 1967. About 200 kg of weapon-grade uranium could have been consumed
in these seven tests.42 In later tests China may have moved to more-compact
plutonium-based pits for fission weapons and as primaries for two-stage ther-
monuclear weapons. Assuming that tests with yields significantly above 20 kT
were thermonuclear weapons with secondaries containing weapon-grade HEU,
then about 550 kg of HEU would have been consumed in these thermonuclear
tests.43 Altogether, nuclear weapons testing may have consumed about 750 kg
of HEU or the equivalent of 0.15 million SWU.

Process Losses
We assume process losses of about 1 percent, somewhat larger than those

reported for the U.S. uranium enrichment program. In this case, about 200 kg
of weapon-grade uranium would have been lost during production.44

Other
China may have used tens of kilograms of HEU to fuel a tritium-production

reactor—say 10,000 SWU.
A.Q. Khan has claimed that China provided 50 kg of weapon-grade HEU to

Pakistan in 1982.45 But many Chinese experts doubt this. Table 2 summarizes
the above estimates.

It is estimated that China could have a current inventory of about 16 ± 4
tons of HEU for weapons.46 This is at the low end of previous estimates.47
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76 Zhang

Table 2: China’s estimated production and use of enrichment work.

Millions of SWUs
Activity produced or consumed

Enrichment work produced during
the period China was producing
HEU

3.8

Enrichment work used for
non-weapon purposes

Research-reactor fuel −0.2
Naval-reactor fuel −0.17
Tritium-production-reactor fuel −0.01
Process losses 0.04
Nuclear tests −0.15
Provided to Pakistan? −0.01
Total remaining available for

weapons HEU
3.2

PLUTONIUM PRODUCTION AND INVENTORY

China has produced plutonium for weapons at two sites:

1) Jiuquan Atomic Energy Complex (also referred to as Plant 404) near Yu-
men in Gansu province. This site includes China’s first plutonium reactor
and the associated reprocessing facilities.

2) Guangyuan plutonium production complex (Plant 821), located at
Guangyuan in Sichuan province. This “Third Line” site includes a plu-
tonium reactor and reprocessing facility.

It is believed that production of plutonium for weapons has ended at both
sites. China is interested, however, in reprocessing civilian power-reactor fuel
and has built a pilot commercial reprocessing plant. As of late 2010, the facility
had not started normal operation.

Jiuquan Complex
The Jiuquan plutonium production reactor is a graphite-moderated, water-

cooled reactor (see Figure 4). It was designed in 1958 with Soviet assistance
and construction started in March 1960. China had not, however, received the
key components of the reactor when the Soviet Union ended its support in
August 1960.48 Completion of the reactor project was significantly delayed as
Beijing decided to concentrate on completing the Lanzhou enrichment plant.
Work resumed on the Jiuquan reactor after the enrichment plant went into
operation in 1964. The reactor went critical in October 1966 and went into full
operation in 1967.49
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China’s HEU and Plutonium Production and Stocks 77

Figure 4: The Jiuquan plutonium production reactor. The image is from 25 February 2004.
(Coordinate: 40◦ 13′23.32′′N/97◦21′21.26′′ E). Source: Space Imaging.

During its early years, the reactor encountered a number of technical prob-
lems and was frequently shutdown. During the late 1960s and early 1970s, its
operation also was affected by the political turmoil of the Cultural Revolu-
tion.50 After 1970, however, the reactor ran without an unscheduled shutdown
until it was shut down in 1974 for most of the year for tests, repair, and main-
tenance.51

The reactor reached its design power by the first half of 1975.52 Thereafter,
the power and performance of the reactor were increased significantly.53 As a
result of these improvements, by the end of 1970s, the plutonium production
rate had increased 20 percent (realizing the “1.2 reactor” goal).54 The reactor
was most likely shut down in 1984.55

Construction of a pilot reprocessing plant near the reactor site started
in 1965 and the plant began operation in September 1968. The plant had
two production lines that could together process 0.4 tons of spent fuel per
day and operated over 250 days a year.56 This capacity could separate about
70 kg of weapon-grade plutonium per year.57 It separated the plutonium for
China’s first test of a plutonium-based weapon, which occurred in December
1968.58 The pilot reprocessing plant stopped plutonium separation when a
larger plant, also built near the reactor site, began operating in April 1970.
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Power of the Reactor
One approach to estimating the Jiuquan reactor’s power is through the

size of its six cooling towers. Based on commercial satellite images, it appears
that that the towers have a top diameter of about 30 meters, which suggests a
design power of about 14–140 MWt per tower.59 Assuming that 85 percent of
the heat was dissipated through the cooling towers and that two towers were
kept on standby, the reactor power would be between 70 MWt and 660 MWt.60

Thus, the cooling tower sizes do not provide the basis of an accurate estimate
but do, at least, provide a consistency check for other estimates.

Since Russia helped design the Jiuquan reactor in the late 1950s, the
power of Russia’s graphite-moderated plutonium production reactors at Mayak
at that time may be relevant. Russia’s first production reactor, the A reactor,
had an initial design thermal power of 100 MWt and, in the period between
1950–54 was operating at about 180 MWt, while subsequent reactors at Mayak
were designed with a capacity of 300 MWt.61 This suggests China’s Jiuquan re-
actor could have had an initial design power in the range of 200–300 MWt.

Newly declassified information about the unfinished Chinese plutonium-
production reactors (Plant 816) at Fuling, in Sichuan province, also provides a
way to constrain estimates of the power of the Jiuquan reactor. Beijing decided
in 1966 to build three 80 MWt graphite-moderated, water-cooled plutonium-
production reactors and associated reprocessing facilities in caves under a
mountain near Fuling as a “Third Line” project.62 If the goal of the project was
to build a back-up capacity to the Jiuquan reactor, the planned total power of
240 MWt at the new site probably matched that of the Jiuquan reactor.

Construction started on the Fuling reactors in February 1967. In 1969,
given the very slow progress of the work in the mined-out caverns and increas-
ing tensions with the Soviet Union, Beijing decided to meet its urgent need
to have a backup for the Jiuquan complex by quickly building a plutonium-
production complex at Guangyuan. In 1984, with the Guangyuan reactor op-
erating, and a more benign international security situation, Beijing decided to
end the Project 816 project at Fuling. By then about 85 percent of the civil en-
gineering work had been finished and over 60 percent of the plant equipment
had been installed. None of the reactors were ever loaded with fuel, however.
The plant was converted to fertilizer production, the project was declassified in
2003 and part of the site was opened as a domestic tourist attraction in 2010
(Figures 5).

Plutonium Production
The plutonium production rate is dependent on the thermal power of the

reactor, its capacity factor, and the amount of plutonium produced per
megawatt-day of operation.63 The estimated total plutonium production by
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China’s HEU and Plutonium Production and Stocks 79

Figure 5: Left: Entrance to the Fuling nuclear complex. The sign in Chinese above the tunnel
reads, “816 Underground Nuclear Project.” Source: <http://news.qq.com/a/20100426/000
373.htm]
Right: Project 816 reactor control room. This image shows core arrangements for three
reactors—two to the left and one to the right of the circular display. Source:
<http://news.qq.com/a/20100426/000373 3.htm>

the Jiuquan reactor is based on the above information and the following
assumptions:

• From 1967 through June 1975, the reactor power increased linearly from
0.5 percent of design power to full design power, assumed to be 250 MWt.
The capacity factor during 1967–69 is assumed to be 40 percent and there-
after about 80 percent (288 days per year) except for 1974, during which
the reactor was mostly down for maintenance

• From July 1975 through 1979, the reactor linearly increased its plutonium
production rate to 1.2 times, as reported for the end of 1979

• From 1980 until shutdown in 1984, the plutonium production rate stayed
at 1.2 times the design rate.

Under these assumptions, the Jiuquan reactor could have produced a total
of 1050 GWt-days of fission energy and generated a total of about 0.9 tons of
weapon-grade plutonium.64

Guangyuan Complex
As already noted, in 1968, given the slow pace of work on the underground

reactor complex at Fuling, Beijing decided to build an alternative “Third Line”
plutonium production complex, Plant 821 at Guangyuan, also in Sichuan
province. Like the Jiuquan reactor, the Guangyuan reactor was graphite
moderated and water cooled and presumably of the same design power (see
Figure 6).

Construction started in 1969, and the reactor achieved criticality in De-
cember 1973 and design power by October 1974.65 By increasing the power
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80 Zhang

Figure 6: The Guangyuan reactor site. This image was taken on 31 August 2007 by a
DigitalGlobe satellite (coordinates: 32◦ 29′ 44.27′ ′ N/105◦ 35′ 24.48′′ E) Source: DigitalGlobe
and Google Earth.

and uranium-235 burnup, the plutonium production rate of this reactor was
increased 30 percent by 1978, resulting in it being dubbed the “1.3 reactor.”66

Thus, combined with Jiuquan’s “1.2 reactor,” the Jiuquan and Guangyuan re-
actors were described as “2.5 reactors” by the end of the 1970s.67 This descrip-
tion reinforces the assumption that the Jiuquan and Guangyuan reactors had
similar design power.

It is reasonable to assume that the Guangyuan plant stopped plutonium
production by 1989, when, following the new policy of “military-to-civilian con-
version,” the plant began to convert to civilian use, including aluminum man-
ufacture.68 The Guangyuan plant was reportedly shut down by 1991.69 The
complex is being decommissioned.

The reprocessing plant at the complex started operation in 1976 and
reached its design capacity in 1977.70 It presumably closed in the early 1990s
after the last batch of fuel from the reactor had been reprocessed.

Plutonium Production
The estimated plutonium production by the Guangyuan reactor is based

on the above information and the following assumptions:
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Figure 7: Reconstructed history of total production of weapon-grade plutonium by Jiuquan
and Guangyuan reactors (kilograms per year).

• From December 1973 through October 1974, the reactor power increased
to its design power of 250 MWt with a capacity factor of 40 percent

• From November 1974 through December 1978, the plutonium production
rate increased linearly to 1.3 times the design rate of the Jiuquan reactor

• The reactor maintained this 1.3 times production rate until 1988. It is as-
sumed the reactor stopped plutonium production at the end of 1988.

Under these assumptions, the Guangyuan reactor could have produced a
total of 1,300 GWd and generated a total of about 1.1 tons of weapon-grade
plutonium (see Figures 7 and 8).71

Use in Nuclear Tests
China carried out 38 nuclear tests after it began producing plutonium.

Most of these tests could have contained weapon-grade plutonium, either in
a simple fission weapon, a compact boosted fission weapon, or as the fission
primary in a two-stage thermonuclear weapon. A total of about 200 kilograms
of plutonium would have been used in these tests, assuming an average of 5 kg
of weapon-grade plutonium per test.72
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Figure 8: Cumulative production of weapon-grade plutonium at Jiuquan and Guangyuan
reactors.

Plutonium Inventory
Thus, China’s two plutonium production reactors produced an estimated

2 ± 0.5 tons of weapon-grade plutonium.73 Subtracting the 200 kg of pluto-
nium estimated to have been consumed in China’s nuclear tests, its current
inventory of weapon-grade plutonium would be 1.8 ± 0.5 tons.

This estimate is at the low end of a U.S. Department of Energy estimated
range, reported in 1999, of 1.7–2.8 tons of weapon plutonium,74 and smaller
than most previous non-governmental estimates. It is smaller due largely to
the assumption that the Jiuquan reactor and Guangyuan reactors had a design
power of 250 MWt, whereas earlier estimates assumed that the Guangyuan
reactor had a power twice that of the Jiuquan reactor. Earlier estimates also
assumed that the power of these reactors increased much more than the 20–30
percent cited here.75 The resulting decrease in estimated plutonium production
due to the lower reactor power levels assumed here is somewhat offset by the
assumption of higher capacity factors.

China reports no inventory of separated civilian plutonium in its decla-
ration to the International Atomic Energy Agency (IAEA), the most recent of
which was for the end of 2007.76 This situation can be expected to change soon,
however. In 2010, China completed and began testing a pilot commercial re-
processing plant with a capacity of 60 tons of spent fuel per year. The China
National Nuclear Corporation has also proposed building a commercial-scale
reprocessing plant with a capacity of 800 tons per year by 2025.77 Such a plant
could separate about 8 tons of plutonium per year. This would quickly provide
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China with a civilian inventory of separated plutonium much larger than its
military stockpile.

CONCLUSIONS

While China has not declared officially that it has ended HEU and plutonium
production for weapons, based on new public information, it is believed that
China stopped production of HEU in 1987 and of plutonium by about 1990. All
its previous military production facilities have been closed, converted, or are
being decommissioned.

Based on new public information, this article estimates that China pro-
duced 20 ± 4 tons of HEU, 2 ± 0.5 tons of plutonium and currently has stock-
piles of about 16 ± 4 tons of HEU and 1.8 ± 0.5 tons of plutonium available
for weapons. These new estimates are significantly lower than most previ-
ous independent estimates, which range from 17–26 tons of HEU and 2.1–6.6
tons of plutonium. The estimates presented here show that China could have
the smallest military stockpile of HEU and plutonium available for weapons
among the five acknowledge nuclear weapon states, which is consistent with
China’s minimum nuclear deterrence policy.

It should be noted that without the official knowledge of the operating his-
tory and power of China’s plutonium-production reactors and the capacities
of its uranium-enrichment plants, any estimates of China’s fissile material
stocks will have great uncertainties. However, the estimates and approaches
described here would be used to further narrow the uncertainties as new infor-
mation becomes available.

China’s existing smaller stockpile of fissile material would be sufficient for
its current modernization programs. However, if the United States moves its
missile defense and space weapons plans forward, which would drive China to
build more intercontinental ballistic missiles to neutralize those threats, China
may need more fissile materials, thus retaining its option to restart production
of fissile materials and be unwilling to join a fissile material cutoff treaty.

Moreover, China’s limited stockpile of fissile materials would put a cap on
its arsenal of weapons, which could influence China’s decision on when China
would join the process of the multilateral nuclear disarmament.
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