From the current Issues in Science and Technology:
"U.S. science policy since World War II has in large measure been driven by Vannevar Bush’s famous paper Science—The Endless Frontier. Bush’s separation of research into 'basic' and 'applied' domains has been enshrined in much of U.S. science and technology policy over the past seven decades, and this false dichotomy has become a barrier to the development of a coherent national innovation policy. Much of the debate centers on the appropriate federal role in innovation. Bush argued successfully that funding basic research was a necessary role for government, with the implication that applied research should be left to the auspices of markets. However, the original distinction does not reflect what actually happens in research, and its narrow focus on the stated goals of an individual research project prevents us from taking a more productive holistic view of the research enterprise.
"By examining the evolution of the famous linear model of innovation, which holds that scientific research precedes technological innovation, and the problematic description of engineering as 'applied science,' we seek to challenge the existing dichotomies between basic and applied research and between science and engineering. To illustrate our alternative view of the research enterprise, we will follow the path of knowledge development through a series of Nobel Prizes in Physics over several decades.
"This mini-history reveals how knowledge grows through a richly interwoven system of scientific and technological research in which there is no clear hierarchy of importance and no straightforward linear trajectory. Accepting this reality has profound implications for the design of research institutions, the allocation of resources, and the national policies that guide research. This in turn can open the door to game-changing discoveries and inventions and put the nation on the path to a more sustainable science and technology ecosystem..." (Continue reading the full text here)