Journal Article - Environmental Research Letters

Stratospheric Aerosol Injection Tactics and Costs in the First 15 Years of Deployment

| 2018

Abstract

We review the capabilities and costs of various lofting methods intended to deliver sulfates into the lower stratosphere. We lay out a future solar geoengineering deployment scenario of halving the increase in anthropogenic radiative forcing beginning 15 years hence, by deploying material to altitudes as high as ~20 km. After surveying an exhaustive list of potential deployment techniques, we settle upon an aircraft-based delivery system. Unlike the one prior comprehensive study on the topic (McClellan et al 2012 Environ. Res. Lett. 7 034019), we conclude that no existing aircraft design—even with extensive modifications—can reasonably fulfill this mission. However, we also conclude that developing a new, purpose-built high-altitude tanker with substantial payload capabilities would neither be technologically difficult nor prohibitively expensive. We calculate early-year costs of ~$1500 ton−1 of material deployed, resulting in average costs of ~$2.25 billion yr−1 over the first 15 years of deployment. We further calculate the number of flights at ~4000 in year one, linearly increasing by ~4000 yr−1. We conclude by arguing that, while cheap, such an aircraft-based program would unlikely be a secret, given the need for thousands of flights annually by airliner-sized aircraft operating from an international array of bases.

For more information on this publication: Please contact Science, Technology, and Public Policy
For Academic Citation:

Smith, Wake and Gernot Wagner. "Stratospheric Aerosol Injection Tactics and Costs in the First 15 Years of Deployment." Environmental Research Letters, vol. 13. (2018) , doi: https://doi.org/10.1088/1748-9326/aae98d.

The Authors